Unit 11 Membrane Analogy (for Torsion)

Readings:

- Rivello 8.3, 8.6
- T & G 107, 108, 109, 110, 112, 113, 114

Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering Systems For a number of cross-sections, we cannot find stress functions. However, we can resort to an analogy introduced by Prandtl (1903).

Consider a membrane under pressure p_i

"<u>Membrane</u>": structure whose thickness is small compared to surface dimensions and it (thus) has negligible bending rigidity (e.g. soap bubble)

 \Rightarrow membrane carries load via a constant tensile force along itself.

N.B. Membrane is 2-D analogy of a string (plate is 2-D analogy of a beam)

Stretch the membrane over a cutout of the cross-sectional shape in the x-y plane:

Figure 11.1 Top view of membrane under pressure over cutout

N = constant tension force per unit length [lbs/in] [N/M]

Look at this from the side:

Figure 11.2 Side view of membrane under pressure over cutout

We want to take equilibrium of a small element:

(assume small angles
$$\frac{\partial W}{\partial x}$$
, $\frac{\partial W}{\partial y}$)

Look at side view (one side):

Figure 11.4 Side view of deformation of membrane under pressure

Note: we have similar picture in the x-z plane

Fall, 2002

We look at equilibrium in the z direction.

Take the z-components of N:

(acts over dx face)

MIT - 16.20

With this established, we get:

$$\uparrow + \sum F_z = 0 \implies p_i \, dx dy - N \frac{\partial w}{\partial y} dx + N \left[\frac{\partial w}{\partial y} + \frac{\partial^2 w}{\partial y^2} dy \right] dx - N \frac{\partial w}{\partial x} dy + N \left[\frac{\partial w}{\partial x} + \frac{\partial^2 w}{\partial x^2} dx \right] dy = 0$$

Eliminating like terms and canceling out dxdy gives:

$$p_{i} + N \frac{\partial^{2} w}{\partial y^{2}} + N \frac{\partial^{2} w}{\partial x^{2}} = 0$$

$$\Rightarrow \frac{\partial^{2} w}{\partial x^{2}} + \frac{\partial^{2} w}{\partial y^{2}} = -\frac{p_{i}}{N}$$
Govern
Different
Equation
deflection

Governing Partial Differential Equation for deflection, w, of a membrane

Boundary Condition: membrane is attached at boundary, so w = 0 along contour

 \Rightarrow Exactly the same as torsion problem:

	<u>Torsion</u>	<u>Membrane</u>
Partial Differential Equation	$\nabla^2 \phi = 2Gk$	$\nabla^2 w = -p_i / N$
Boundary Condition	$\phi = 0$ on contour	w = 0 on contour

Analogy:

Membrane		Torsion
W	\uparrow	φ
p _i	\rightarrow	- k
Ν	→	1 2G
$\frac{\partial \mathbf{W}}{\partial \mathbf{X}}$		$\frac{\partial \phi}{\partial x} = \sigma_{zy}$
$\frac{\partial W}{\partial y}$		$\frac{\partial \phi}{\partial y} = -\sigma_{zx}$
Volume = \iint wdxdy	\rightarrow	$-\frac{T}{2}$

- <u>Note</u>: for orthotropic, would need a membrane to give different N's in different directions in proportion to G_{xz} and G_{yz} \Rightarrow Membrane analogy only applies to isotropic materials
- This analogy gives a good "physical" picture for φ
- Easy to visualize deflections of membrane for odd shapes
- *Figure 11.5* Representation of φ and thus deformations for various closed cross-sections under torsion

Can use (and people have used) elaborate soap film equipment and measuring devices (See Timoshenko, Ch. 11)

From this, can see a number of things:

- Location of maximum shear stresses (at the maximum slopes of the membrane)
- Torque applied (volume of membrane)
- "External" corners do not add appreciability to the bending rigidity (J)
 - \Rightarrow eliminate these:

Figure 11.6€ **Representation of effect of external corners**

• Fillets (i.e. @ internal corners) eliminate stress concentrations

Figure 11.7 Representation of effect of internal corners

To illustrate some of these points let's consider specifically...

<u>Torsion of a Narrow Rectangular</u> <u>Cross-Section</u>

Figure 11.8 Representation of torsion of structure with narrow rectangular cross-section

MIT - 16.20

Use the Membrane Analogy for easy visualization:

Figure 11.9 Representation of cross-section for membrane analogy

Consider a cross-section in the middle (away from edges):

Figure 11.10 Side view of membrane under pressure

MIT - 16.20

The governing Partial Differential Equation. is:

$$\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = -\frac{p_i}{N}$$

Near the middle of the long strip (away from $y = \pm b/2$), we would expect $\frac{\partial^2 W}{\partial y^2}$ to be small. Hence approximate via: $\frac{\partial^2 W}{\partial x^2} \approx -\frac{p_i}{N}$

To get w, let's integrate:

$$\frac{\partial w}{\partial x} \approx -\frac{p_i}{N}x + C_1$$
$$w \approx -\frac{p_i}{2N}x^2 + C_1x + C_2$$

Now apply the boundary conditions to find the constants:

$$w = +\frac{h}{2}, w = 0$$

Paul A. Lagace © 2001

Unit 11 - p. 13

 $\Rightarrow 0 = -\frac{p_i}{2N}\frac{h^2}{4} + C_1\frac{h}{2} + C_2$ @ $x = -\frac{h}{2}, w = 0$ $\Rightarrow 0 = -\frac{p_i}{2N}\frac{h^2}{4} - C_1\frac{h}{2} + C_2$

This gives:

$$C_{1} = 0$$

$$C_{2} = \frac{p_{i}h^{2}}{8N}$$
Thus:
$$w \approx \frac{p_{i}}{2N} \left(\frac{h^{2}}{4} - x^{2}\right)$$

Check the volume:

Volume =
$$\iint w \, dx \, dy$$

Paul A. Lagace © 2001

Fall, 2002

integrating over dy:

$$= b \int_{-\frac{h}{2}}^{\frac{h}{2}} \frac{p_i}{2N} \left(\frac{h^2}{4} - x^2\right) dx$$

$$= \frac{p_i b}{2N} \left[\frac{h^2}{4}x - \frac{x^3}{3}\right]_{-\frac{h}{2}}^{\frac{h}{2}}$$

$$= \frac{p_i b}{2N} \left[\frac{h^2}{4}\frac{2h}{2} - \frac{2}{3}\frac{h^3}{8}\right]$$

$$\Rightarrow \text{Volume} = \frac{p_i b}{N} \frac{h^3}{12}$$

Using the Membrane Analogy:

$$p_i = -k$$

$$N = \frac{1}{2G}$$
Volume = $-\frac{T}{2} = \frac{p_i b}{N} \frac{h^3}{12}$

MIT - 16.20

$$\frac{-kbh^{3}2G}{12} = -\frac{T}{2}$$

$$\Rightarrow k = -\frac{3T}{Gbh^{3}} \quad (k - T \text{ relation})$$

$$\text{where: } k = \frac{d\alpha}{dz}$$
So:
$$\frac{d\alpha}{dz} = \frac{T}{GJ}$$

$$\text{where: } J = \frac{bh^{3}}{3}$$

To get the stress:

$$\sigma_{yz} = \frac{\partial w}{\partial x} = -\frac{p_i}{N}x = 2kGx$$
$$\sigma_{yz} = \frac{2T}{J}x$$

(maximum stress is twice that in a circular rod)

$$\sigma_{xz} = \frac{\partial w}{\partial y} = 0$$
 (away from edges)

Near the edges, $\sigma_{xz} \neq 0$ and σ_{yz} changes:

Figure 11.11 Representation of shear stress "flow" in narrow rectangular cross-sections

Need formulae to correct for "finite" size dependent on ratio b/h. This is the key in b >> h.

Other Shapes

Through the Membrane Analogy, it can be seen that the previous theory for long, narrow rectangular sections applies also to other shapes.

Figure 11.12 Representation of different thin open cross-sectional shapes for which membrane analogy applies

Consider the above (as well as other similar shapes) as a long, narrow membrane

 \rightarrow consider the thin channel that then results....

Figure 11.13 Representation of generic thin channel cross-section

This gives:

Paul A. Lagace © 2001

Unit 11 - p. 19

$$-k2G\left[\frac{b_1h_1^3}{12} + \frac{b_2h_2^3}{12} + \frac{b_3h_3^3}{12}\right] = -\frac{T}{2}$$
$$\Rightarrow k = \frac{T}{GJ} \qquad \Rightarrow k - T \text{ relation}$$

where:

$$J = \frac{1}{3}b_1h_1^3 + \frac{1}{3}b_2h_2^3 + \frac{1}{3}b_3h_3^3 = \sum_i \frac{1}{3}b_ih_i^3$$

For the stresses:

$$\sigma_{yz} = \frac{\partial w}{\partial x} = -\frac{p_i}{N}x = k2Gx = \frac{2T}{J}x$$
("local" x)

 \Rightarrow maximum

$$\sigma_{yz} = \frac{2T}{J}\frac{h_1}{2} \quad \text{in section } 1$$

$$\sigma_{yz} = \frac{2T}{J}\frac{h_2}{2} \quad \text{in section } 2$$

$$\sigma_{yz} = \frac{2T}{J}\frac{h_3}{2} \quad \text{in section } 3$$

Paul A. Lagace © 2001

Unit 11 - p. 20

 \Rightarrow make "fillets" there

Figure 11.15 Channel cross-section with "fillets" at inner corners

Use the Membrane Analogy for other cross-sections

for example: variable thickness (thin) cross-section

Figure 11.15 Representation of wing cross-section (variable thickness thin cross-section)

Using the Membrane Analogy:

$$J \approx \frac{1}{3} \int_{y_L}^{y_T} h^3 dy$$
 $\sigma_{zy} \approx \frac{2T}{J} \frac{h}{2}$ etc.

Now that we've looked at open, walled sections; let's consider closed (hollow) sections. (thick, then thin)

Paul A. Lagace © 2001

Unit 11 - p. 22