Bodies of Revolution: Slender Body Theory

1 Coordinates

We will use cylindrical cordinates, x, r, θ

2 Velocity components (x, r, θ)

$$
\begin{gathered}
u_{1}=U_{\infty}+u=\frac{\partial \Phi}{\partial x} \\
\nu=\frac{\partial \Phi}{\partial r}
\end{gathered}
$$

$$
\omega=\frac{1}{r} \frac{\partial \Phi}{\partial \theta}
$$

3 Continuity equation

$$
\frac{\partial}{\partial x}\left(\rho u_{1}\right)+\frac{1}{r} \frac{\partial}{\partial u r}+\frac{1}{r} \frac{\partial}{\partial \theta}(\rho \omega)=0
$$

4 LINEARIZED PERTURBATION POTENTIAL EQUATION

$$
\left(1-M_{\infty}^{2}\right) \frac{\partial^{2} \Phi}{\partial x^{2}}+\frac{\partial^{2} \Phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \Phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \Phi}{\partial \theta^{2}}=0
$$

5 Boundary conditions

Velocity gradients near axis are very large. Continuity equation yields:

$$
\begin{gathered}
\frac{1}{r} \frac{\partial}{\partial r}(\nu r) \sim \frac{\partial u}{\partial x} \\
\text { or } \\
\frac{\partial}{\partial r}(\nu r) \sim r \frac{\partial u}{\partial x}
\end{gathered}
$$

Where $\frac{\partial u}{\partial x}$ is NOT infinite. Hence, for $r \rightarrow 0$, near the axis:

$$
\begin{gathered}
\frac{\partial}{\partial r}(\nu r) \sim 0 \\
\nu r=a_{0}(x)
\end{gathered}
$$

We may use a power series expansion:

$$
\begin{gathered}
v r=a_{0}+a_{1} r+a_{2} r^{2}+\ldots \\
\text { or } \\
v r=\frac{a_{0}}{r}+a_{1}+a_{2} r+\ldots
\end{gathered}
$$

The correct statement of the boundary condition on the axis is:

$$
\frac{d R}{d x}=\left(\frac{v}{U_{\infty}+u}\right)_{R}
$$

Multiply by R:

$$
R \frac{d R}{d x}=R\left(\frac{v}{U_{\infty}+u}\right) \cong \frac{(v r)_{0}}{U_{\infty}}
$$

For irrotational flow:

$$
\frac{\partial u}{\partial r}=\frac{\partial u}{\partial x}
$$

Substituting for u :

$$
\begin{gathered}
\frac{\partial u}{\partial r}=\frac{a_{0}^{\prime}}{r}+a_{1}^{\prime}+a_{2}^{\prime} r+\ldots \\
a_{n}^{\prime}=\frac{\partial a_{n}}{\partial x}
\end{gathered}
$$

Integrating:

$$
u=a_{0}^{\prime} \log (r)+a_{1}^{\prime} r+\ldots
$$

And the "linearized" pressure coefficient reduces to:

$$
\begin{gathered}
C_{p}=-\frac{2 u}{U_{\infty}}-\left(\frac{v}{U_{\infty}}\right)^{2} \\
C_{p}=\frac{2}{\gamma M_{\infty}^{2}}\left[\left[1-\frac{\gamma-1}{2} M_{\infty}^{2}\left(\frac{2 u}{U_{\infty}}+\frac{u^{2}}{U_{\infty}^{2}}+\frac{v^{2}}{U_{\infty}^{2}}+\frac{\omega^{2}}{U_{\infty}^{2}}\right)\right]^{\frac{\gamma}{\gamma-1}}-1\right]
\end{gathered}
$$

Axially symmetric flow:

- No variation with θ
- Conditions are the same in every meridian plane
- $\omega=0$

$$
\frac{\partial^{2} \Phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \Phi}{\partial r}+\left(1-M_{\infty}^{2}\right) \frac{\partial^{2} \Phi}{\partial x^{2}}=0
$$

6 INCOMPRESSIBLE SOLUTION

$$
\begin{gathered}
M_{\infty}=0 \\
\frac{\partial^{2} \Phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \Phi}{\partial r}+\frac{\partial^{2} \Phi}{\partial x^{2}}=0
\end{gathered}
$$

This is Laplace's Equation and has the basic solution:

$$
\Phi=\frac{\text { Constant }}{\sqrt{x^{2}+r^{2}}}
$$

This is a source of finite strength. For a source at the position $x=\xi$ on the x -axis, we write:

$$
\Phi(x, r)=-\frac{A}{\sqrt{(x-\xi)^{2}+r^{2}}}
$$

Superposition is correct!

$$
\Phi(x, r)=-\left[\frac{A_{0}}{\sqrt{x^{2}+r^{2}}}+\frac{A_{1}}{\sqrt{\left(x-\xi_{1}\right)^{2}+r^{2}}}+\frac{A_{2}}{\sqrt{\left(x-\xi_{2}\right)^{2}+r^{2}}}+\ldots\right]
$$

For a source distribution, we have:

$$
\Phi(x, r)=-\int_{0}^{l} \frac{f(\xi)}{\sqrt{\left.(x-\xi)^{2}+r^{2}\right)}} d \xi
$$

How is $f(\xi)$ determined?

7 SUBSONIC SOLUTION

Let: $m^{2} \equiv\left(1-M_{\infty}^{2}\right)>0$

$$
\frac{1}{m^{2}} \frac{\partial^{2} \Phi}{\partial r^{2}}+\frac{1}{m^{2}} \frac{1}{r} \frac{\partial \Phi}{\partial r}+\frac{\partial^{2} \Phi}{\partial x^{2}}=0
$$

Transform as follows:

$$
r^{\prime}=m r
$$

Substitute:

$$
\frac{\partial^{2} \Phi}{\partial r^{\prime 2}}+\frac{1}{r^{\prime}} \frac{\partial \Phi}{\partial r^{\prime}}+\frac{\partial^{2} \Phi}{\partial x^{2}}=0
$$

Solutions:

$$
\begin{gathered}
\Phi(x, r)=-\frac{A}{\sqrt{\left.(x-\xi)^{2}+m^{2} r^{2}\right)}} \\
\Phi(x, r)=-\int_{0}^{l} \frac{f(\xi)}{\sqrt{\left.(x-\xi)^{2}+m^{2} r^{2}\right)}} d \xi
\end{gathered}
$$

8 F(X), S(X), R(X) Relation

For a line source, we let A be the volume of fluid sent out per unit time per unit length of the line source. Recall the line source:

$$
\Phi(x, r)=\frac{A}{\sqrt{\left(x^{2}+r^{2}\right)}}
$$

For a distribution of sources, we write:

$$
\Phi(x, r)=\frac{A(x)}{\sqrt{\left(x^{2}+r^{2}\right)}}=\frac{f(x)}{\sqrt{\left(x^{2}+r^{2}\right)}}
$$

At a distance r, the flow is distributed uniformly over a cylindrical surface with a circumference of $2 \pi r$. Hence, at any x :

$$
\nu=\frac{f(x)}{2 \pi r}=\frac{\partial \Phi}{\partial r}
$$

At the surface of the slender body:

$$
\begin{gathered}
\left(\frac{v}{U_{\infty}+u}\right)_{R}=\frac{d R}{d x} \\
\text { or } \\
\left(\frac{v}{U_{\infty}}\right)_{R}=\frac{d R}{d x}
\end{gathered}
$$

Therefore:

$$
v_{R}=U_{\infty} \frac{d R}{d x}
$$

Substituting:

$$
\begin{gathered}
\frac{f(x)}{2 \pi R}=U_{\infty} \frac{d R}{d x} \\
f(x)=2 \pi U_{\infty} R \frac{d R}{d x}
\end{gathered}
$$

Any any x:

$$
S(x)=\pi R^{2}
$$

Therefore:

$$
S^{\prime}(x)=2 \pi R \frac{d R}{d x}
$$

Hence:

$$
f(x)=U_{\infty} S^{\prime}(x)
$$

MIT OpenCourseWare
https://ocw.mit.edu/

16.121 Analytical Subsonic Aerodynamics

Fall 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

