Fundamentals of Fluid Mechanics

1 Fundamentals of Fluid Mechanics

1.1 Assumptions

1. Fluid is a continuum
2. Fluid is inviscid
3. Fluid is adiabatic
4. Fluid is a perfect gas
5. Fluid is a constant-density fluid
6. Discontinuities (shocks, waves, vortex sheets) are treated as separate and serve as boundaries for continuous portions of the flow

1.2 Notation

$$
\begin{array}{cc}
p=\text { pressure (static) } & V^{\prime}=\text { control volume } \\
\rho=\text { density } & S^{\prime}=\text { surface surrounding } V^{\prime} \\
T=\text { temperature (absolute) } & \sigma=\text { impermeable body } \\
\bar{Q}=\text { velocity vector of fluid particles } & \bar{n}=\text { normal directed into the fluid } \\
\bar{Q}=U_{\bar{i}}+V_{\bar{j}}+W_{\bar{k}} & R=\text { gas constant } \\
\bar{F}=\text { body force per unit mass } & c_{p}=\text { specific heat at constant pressure } \\
\bar{F}=\nabla \Omega & c_{\nu}=\text { specific heat at constant volume } \\
\Omega=\text { potential of the force field } & \gamma=c_{p} / c_{\nu} \\
\text { Gravity field: } \bar{F}=-g \bar{k} ; \Omega=-g z & e=\text { internal energy per unit mass } \\
h=\text { enthalpy per unit mass; } h=e+\frac{p}{\rho} & s=\text { entropy per unit mass }
\end{array}
$$

1.3 Continuity Equation

$$
\begin{gathered}
\frac{\partial \rho}{\partial t}+\nabla(\rho \bar{Q})=0 \\
\frac{D \rho}{D t}+\rho \nabla \bar{Q}=0 \\
\iiint_{V^{\prime}} \frac{\partial \rho}{\partial t} d V^{\prime}+\oiint_{S^{\prime}+\bar{V}} \rho(\bar{Q} \bar{n}) d s^{\prime}=0 \\
\iiint_{V^{\prime}}\left[\frac{\partial \rho}{\partial t}+\nabla(\rho \bar{Q})\right] d V^{\prime}=0
\end{gathered}
$$

1.4 Conservation of Momentum

$$
\begin{gathered}
\frac{D \bar{Q}}{D t}=\bar{F}-\frac{\nabla p}{\rho} \\
\sum_{i} \overline{F_{i}}=\iiint_{V^{\prime}} \frac{\partial}{\partial t}(\rho \bar{Q}) d V^{\prime}+\oiint_{S^{\prime}+\bar{V}} \rho \bar{Q}(\bar{Q} \bar{n}) d s^{\prime}
\end{gathered}
$$

1.5 Conservation of Thermodynamic Energy

$$
\begin{gathered}
\frac{D}{D t}\left[e+\frac{Q^{2}}{2}\right]=-\frac{\nabla \cdot(p \bar{Q})}{\rho}+\bar{F} \cdot \bar{Q} \\
\rho \frac{D}{D t}\left[h+\frac{Q^{2}}{2}\right]=\frac{\partial p}{\partial t}+\rho \bar{F} \cdot \bar{Q}
\end{gathered}
$$

1.6 Equation of State

$$
\begin{aligned}
p & =R \rho T \quad \text { (thermally perfect gas) } \\
c_{p}, c_{\nu} & =\text { constants } \quad \text { (calorically perfect gas) }
\end{aligned}
$$

2 Pressure Distribution and compressibility

2.1 Assumptions

1. Steady flow
2. Inviscid fluid
3. No discontinuities (shocks)
4. Perfect gas
5. One-dimensional motion
6. Adiabatic flow
7. $\bar{F} \equiv 0$
8. Isentropic

2.2 Notation

($)_{0}=$ stagnation conditions, $\bar{Q}=0$
($)_{\infty}=$ free stream conditions, $\bar{Q}=u_{\bar{c}}=u_{\infty} \bar{c}$
() = conditions on body surface (airfoil)

$$
\begin{gathered}
\bar{Q}=u^{\prime} \bar{i}+u^{\prime} \bar{j}+\omega \bar{k} \\
u^{\prime}=u_{\infty}+\gamma u
\end{gathered}
$$

2.3 Energy Equations

$$
\begin{gathered}
h=e+\frac{p}{\rho} \\
d\left[h+\frac{1}{2} Q^{2}\right]=0
\end{gathered}
$$

(Heat content plus kinetic energy is constant)

2.4 Perfect Gas Relations

$$
\begin{gathered}
p=\rho R T \\
p V=R T \\
V \equiv \frac{1}{\rho}
\end{gathered}
$$

Can show, without effort:

$$
\begin{gathered}
\rho V^{\gamma}=\text { constant } \\
p\left(\frac{1}{\rho}\right)^{\gamma}=\text { constant } \\
a^{2}=\gamma \frac{p}{\rho}, a=\text { speed of sound } \\
Q=\sqrt{2 c_{p}\left(T_{0}-T\right)} \\
T_{0}-T=T_{0}\left[1-\frac{T}{T_{0}}\right]=T_{0}\left[1-\left(\frac{p}{p_{0}}\right)^{\frac{\gamma-1}{r}}\right] \\
Q=\left\{2 c_{p} T_{0}\left[1-\left(\frac{p}{p_{0}}\right)^{\frac{\gamma-1}{r}}\right]\right\}^{\frac{1}{2}} \\
M^{2}=\frac{Q^{2}}{a^{2}}=\frac{2 c_{p}\left(T_{0}-T\right)}{r^{\frac{p}{\rho}}}=\frac{2 c_{p}\left(T_{0}-T\right)}{\gamma R T} \\
M^{2}=\frac{2 c_{p}}{\gamma\left(c_{p}-c_{v}\right)}\left(\frac{T_{0}}{T}-1\right)=\frac{2}{(\gamma-1)}\left(\frac{T_{0}}{T}-1\right) \\
\frac{T_{0}}{T}=\left[1+\frac{\gamma-1}{2} M^{2}\right]=\beta(\gamma, M) \\
\frac{p_{0}}{p}=\left(\frac{T_{0}}{T}\right)^{\frac{\gamma}{r-1}}=\beta^{\frac{\gamma}{r-1}} \\
\frac{\rho_{0}}{\rho}=\left(\frac{T_{0}}{T}\right)^{\frac{1}{\gamma-1}}=\beta^{\frac{1}{r-1}}
\end{gathered}
$$

2.6 OTHER USEFUL FORMS, EXPRESSIONS

$$
\begin{gathered}
Q^{2}=2 c_{p}\left(T_{0}-T\right) \\
a_{0}^{2}=\gamma \frac{p_{0}}{\rho_{0}}=\gamma R T_{0} \\
\frac{Q^{2}}{a_{0}^{2}}=\frac{2 c_{p}}{\gamma R}\left(1-\frac{T}{T_{0}}\right)=\frac{2}{\gamma-1}\left(1-\frac{T}{T_{0}}\right) \\
\frac{T}{T_{0}}=1-\frac{\gamma-1}{2}\left(\frac{Q}{a_{0}}\right)^{2} \\
\frac{p}{p_{0}}=\left[1-\frac{\gamma-1}{2}\left(\frac{Q}{a_{0}}\right)^{2}\right]^{\frac{\gamma}{\gamma-1}} \\
\frac{\rho}{\rho_{0}}=\left[1-\frac{\gamma-1}{2}\left(\frac{Q}{a_{0}}\right)^{2}\right]^{\frac{1}{\gamma-1}} \\
a^{2}=a_{0}^{2}-\frac{\gamma-1}{2} Q^{2}
\end{gathered}
$$

2.7 PRESSURE, VELOCITY RELATIONS IN ISENTROPIC FLOW

With some effort, one may show:

$$
\frac{p}{p_{\infty}}=\left[1+\frac{\gamma-1}{2} M_{\infty}^{2}\left(1-\frac{Q^{2}}{u_{\infty}^{2}}\right)\right]^{\frac{\gamma}{\gamma-1}}
$$

Expanding the right-hand side:
$\frac{p}{p_{\infty}}=1+\frac{\gamma}{2}\left(1-\frac{Q^{2}}{u_{\infty}^{2}}\right) M_{\infty}^{2}+\frac{\gamma}{8}\left(1-\frac{Q^{2}}{u_{\infty}^{2}}\right)^{2} M_{\infty}^{4}+\frac{\gamma(2-\gamma)}{48}\left(1-\frac{Q^{2}}{u_{\infty}^{2}}\right)^{3} M_{\infty}^{6}+\frac{\gamma(2-\gamma)(3-2 \gamma)}{384}\left(1-\frac{Q^{2}}{u_{\infty}^{2}}\right)^{4} M_{\infty}^{8}+\ldots$
Obtain an expression for

$$
c_{p}=\frac{p-p_{\infty}}{\frac{1}{2} \rho_{\infty} u_{\infty}^{2}}
$$

Let

$$
Q=u_{\infty}+\gamma V, \quad \frac{\gamma V}{U_{\infty}} \ll 1
$$

Find c_{p} and discuss its limitations.

3 Similarity of Flows

3.1 REQUIREMENTS FOR SIMILARITY OF FLOWS

1. Similarity in boundary geometry

Boundary of one flow can be made to coincide with that of another if its linear dimensions are multiplied by a constant
2. Dynamic constraint

Dependent variables of one flow are proportional to those of another at the corresponding points.

Example Problem - Illustration

Consider the dynamics of an incompressible fluid flow with constant.
Equation of incompressibility:

$$
\frac{D p}{D t}=\frac{\partial \rho}{\partial t}+u_{i} \frac{\partial \rho}{\partial x_{i}}=0
$$

Equation of continuity:

$$
\frac{\partial u_{i}}{\partial x_{i}}=0
$$

Introduce dimensionless variables:

$$
\begin{gathered}
u_{i}^{\prime}=\frac{u_{i}}{U}, \quad \rho^{\prime}=\frac{\rho}{\rho_{0}}, \quad p^{\prime}=\frac{p}{\rho_{0} U^{2}}, \quad x_{i}^{\prime}=\frac{x_{i}}{L}, \quad t^{\prime}=\frac{t U}{L} \\
U, \rho_{0}, L-\text { reference quantities }
\end{gathered}
$$

3.2 LINEAR MOMENTUM

$$
\begin{gathered}
\rho^{\prime}\left(\frac{\partial}{\partial t}+u_{\alpha}^{\prime} \frac{\partial}{\partial x_{\alpha}^{\prime}}\right) u_{i}^{\prime}=-\frac{\partial p^{\prime}}{\partial x_{i}^{\prime}}+\frac{\rho^{\prime} L}{U^{2}} F_{i}+\frac{\gamma}{U L} \frac{\partial^{2}}{\partial x_{\alpha}^{\prime} \partial x_{a}^{\prime}} u_{i}^{\prime} \\
\frac{\partial \rho^{\prime}}{\partial t^{\prime}}+u_{\alpha}^{\prime} \frac{\partial \rho^{\prime}}{\partial x_{\alpha}^{\prime}}=0 \quad \frac{\partial u_{\alpha}^{\prime}}{\partial x_{a}^{\prime}}=0
\end{gathered}
$$

Froude no: $F=\frac{U}{\sqrt{g L}} \longrightarrow \frac{\text { inertia forces }}{\text { gravity force }}$
Reynolds no: $\operatorname{Re}=\frac{U L}{\gamma} \longrightarrow \frac{\text { inertia force }}{\text { viscous force }}$
F and Re must be the same for both flows. This is sufficient for dynamic similarity along with similar boundary geometry.
U, ρ_{0}, L may be different for both flows.

4 Equations governing irrotational flows of a homentropic gas

For this class of flows the simplification is through the introduction of the velocity potential, ϕ, where

$$
\bar{Q}=\nabla \phi
$$

or

$$
u_{i}=\frac{\partial \phi}{\partial x_{i}}
$$

and the vorticity is zero: $\bar{\omega}=\nabla \times \bar{Q}=\nabla \times \nabla \phi=0$ where $\bar{\omega}$ is the vorticity vector.

The unsteady Bernoulli equation may be written, for this class of flows:

$$
\frac{\partial \bar{Q}}{\partial t}+\nabla\left(\frac{1}{2} Q^{2}\right)-\bar{Q} x \bar{\omega}=-\frac{1}{\rho} \nabla p
$$

since, $p=p(\rho), \quad \bar{\omega}=0$

$$
\frac{\partial \bar{Q}}{\partial t}+\nabla\left(\frac{1}{2} Q^{2}\right)+\frac{1}{\rho} \nabla p=0
$$

or

$$
\nabla\left(\frac{\partial \phi}{\partial t}+\frac{1}{2} Q^{2}+\int \frac{\partial p}{\rho}\right)=0
$$

therefore

$$
\frac{\partial \phi}{\partial t}+\frac{1}{2} Q^{2}+\int \frac{d p}{\rho}=f(t)
$$

Absorb $f(t)$ into ϕ and obtain

$$
\frac{\partial \phi}{\partial t}+\frac{1}{2} Q^{2}+\int \frac{d p}{\rho}=\text { constant }
$$

Differentiate above equation with respect to time, t :

$$
\frac{\partial^{2} \phi}{\partial t^{2}}+\bar{Q} \cdot \frac{\partial \bar{Q}}{\partial t}+a^{2} \frac{1}{\rho} \frac{\partial \rho}{\partial t}=0
$$

Expressing the continuity equation in terms of ϕ :

$$
\frac{1}{\rho} \frac{\partial p}{\partial t}+\nabla^{2} \phi+\frac{1}{\rho} \bar{Q} \cdot \nabla \rho=0
$$

Linear momentum equation rewritten yields

$$
\bar{Q} \cdot \frac{1}{\rho} \nabla \rho=\frac{1}{a^{2}} \bar{Q} \cdot \frac{1}{\rho} \nabla p=\frac{1}{a^{2}} \bar{Q}\left\{-\frac{\partial \bar{Q}}{\partial t}-(\bar{Q} \cdot \nabla) \bar{Q}\right\}
$$

Combining the above three equations yields:

$$
\frac{1}{a^{2}} \frac{\partial^{2} \Phi}{\partial t^{2}}+\frac{2}{a^{2}} \bar{Q} \cdot \frac{\partial \bar{Q}}{\partial t}=\nabla^{2} \phi-\frac{1}{a^{2}} \bar{Q} \cdot[(\bar{Q} \cdot \nabla) \bar{Q}]
$$

since $u_{i}=\frac{\partial \Phi}{\partial x_{i}}$, the above equation may be written:

$$
\begin{gathered}
*\left(1-\frac{u^{2}}{a^{2}}\right) \frac{\partial^{2} \Phi}{\partial x^{2}}+\left(1-\frac{v^{2}}{a^{2}}\right) \frac{\partial^{2} \Phi}{\partial y^{2}}+\left(1-\frac{w^{2}}{a^{2}}\right) \frac{\partial^{2} \Phi}{\partial z^{2}}-2 \frac{u v}{a^{2}} \frac{\partial^{2} \Phi}{\partial x \partial y}-2 \frac{v w}{a^{2}} \frac{\partial^{2} \Phi}{\partial y \partial z}-2 \frac{u w}{a^{2}} \frac{\partial^{2} \Phi}{\partial x \partial z}= \\
\frac{1}{a^{2}} \frac{\partial^{2} \phi}{\partial t^{2}}+2 \frac{u}{a^{2}} \frac{\partial^{2} \phi}{\partial x \partial t}+2 \frac{v}{a^{2}} \frac{\partial^{2} \phi}{\partial y \partial t}+2 \frac{w}{a^{2}} \frac{\partial^{2} \phi}{\partial z \partial t}
\end{gathered}
$$

where

$$
u=\frac{\partial \Phi}{\partial x} \quad v=\frac{\partial \Phi}{\partial y} \quad w=\frac{\partial \Phi}{\partial z}
$$

For steady flow of a calorically perfect gas:

$$
\begin{gathered}
h_{0}=\text { constant } \\
c_{p} T+\frac{Q^{2}}{2}=c_{p} T_{0} \\
a^{2}=a_{0}^{2}-\frac{\gamma-1}{2}\left(\Phi_{x}^{2}+\Phi_{y}^{2}+\Phi_{z}^{2}\right)
\end{gathered}
$$

Equation * is the potential-flow equation.

5 Small Perturbation Theory

We will consider a slender body immersed in a uniform flow, viz.,

in the uniform flow:

$$
\bar{Q}=U_{\infty} \bar{i}
$$

in the perturbed flow:

$$
\begin{gathered}
\bar{Q}=u_{\bar{i}}+v_{\bar{j}}+w_{\bar{k}} \\
\bar{Q}=\left(U_{\infty}+u^{\prime}\right)_{\bar{i}}+v_{\bar{j}}^{\prime}+w_{\bar{k}}^{\prime} \\
\bar{Q}=\nabla \phi
\end{gathered}
$$

Now define a perturbation velocity potential, $\phi(x, y, z)$, where

$$
\begin{aligned}
& u^{\prime}=\frac{\partial \phi}{\partial x} \\
& v^{\prime}=\frac{\partial \phi}{\partial y} \\
& w^{\prime}=\frac{\partial \phi}{\partial z}
\end{aligned}
$$

$$
\therefore \Phi(x, y, z)=U_{\infty} x+\phi(x, y, z)
$$

Using the notation in eqn(*):

$$
\begin{gathered}
u=U_{\infty}+w^{\prime}=\frac{\partial \Phi}{\partial x}=U_{\infty}+\frac{\partial \phi}{\partial x} \\
v=v^{\prime}=\frac{\partial \Phi}{\partial y}=\frac{\partial \phi}{\partial y} \\
w=w^{\prime}=\frac{\partial \Phi}{\partial z}=\frac{\partial \phi}{\partial z} \\
\Phi_{x x}=\frac{\partial^{2} \phi}{\partial x^{2}}=\phi_{x x} \\
\Phi_{y y}=\frac{\partial^{2} \phi}{\partial y^{2}}=\phi_{y y} \\
\Phi_{z z}=\frac{\partial^{2} \phi}{\partial z^{2}}=\phi_{z z} \\
\Phi_{x y}=\frac{\partial^{2} \phi}{\partial x \partial y}=\phi_{x y} \\
\Phi_{y z}=\frac{\partial^{2} \phi}{\partial y \partial z}=\phi_{y z}
\end{gathered}
$$

$$
\Phi_{x z}=\frac{\partial^{2} \phi}{\partial x \partial z}=\phi_{x z}
$$

Substituting $\Phi=U_{\infty} x+\phi$ and multiplying eqn $\left(^{*}\right)$ by a^{2} we obtain the perturbation equation or perturbation velocity potential equation, for steady flow:
$* *\left[a^{2}-\left(U_{\infty}+\phi_{x}\right)^{2}\right] \phi_{x x}+\left[a^{2}-\left(\phi_{y}\right)^{2}\right] \phi_{y y}+\left[a^{2}-\left(\phi_{z}\right)^{2}\right] \phi_{z z}-2\left(U_{\infty}+\phi_{x}\right) \phi_{y} \phi_{x y}-2\left(U_{\infty}+\phi_{x}\right) \phi_{z} \phi_{x z}-2 \phi_{y} \phi_{z} \phi_{y z}=0$
Note a^{2} may be expressed as:

$$
\begin{gathered}
a^{2}=a_{\infty}^{2}-\frac{\gamma-1}{2}\left(2 u^{\prime} U_{\infty}+u^{\prime 2}+v^{\prime 2}+w^{\prime 2}\right) \\
a^{2}=a_{\infty}^{2}-\frac{\gamma-1}{2}\left(2 \phi_{x} U_{\infty}+\left(\phi_{x}\right)^{2}+\left(\phi_{y}\right)^{2}+\left(\phi_{z}\right)^{2}\right)
\end{gathered}
$$

Also, note that eqn(**) is exact! It is also non-linear.

5.1 Perturbations

Assume the perturbations are small, viz.,

$$
\frac{u^{\prime}}{U_{\infty}} \ll 1 ; \quad \frac{v^{\prime}}{U_{\infty}} \ll 1 ; \quad \frac{w^{\prime}}{U_{\infty}} \ll 1
$$

In the limit of small perturbations, we may neglect the terms containing squares of the perturbation velocities in comparison to those containing first powers. Eqn(**) with a^{2} substituted becomes
$\left(1-M_{\infty}^{2}\right) \phi_{x x}+\phi_{y y}+\phi_{z z}=M_{\infty}^{2}(\gamma+1) \frac{\phi_{x}}{U_{\infty}} \phi_{x x}+M_{\infty}^{2}(\gamma-1) \frac{\phi_{x}}{U_{\infty}}\left(\phi_{y y}+\phi_{z z}\right)+2 M_{\infty}^{2} \frac{\phi_{y}}{U_{\infty}} \phi_{x y}+2 M_{\infty}^{2} \frac{\phi_{z}}{U_{\infty}} \phi_{x z}$
Note that each term on the right-hand side is non-linear. Each term on the right-hand side contains a perturbation velocity (ϕ_{x}, ϕ_{y}, or ϕ_{z}). Hence, we may neglect the right-hand side in comparison to the left-hand side. We obtain

$$
\left(1-M_{\infty}^{2}\right) \phi_{x x}+\phi_{y y}+\phi_{z z}=0
$$

5.2 Questions

1. What is the equation where $M_{\infty} \rightarrow 1$?
2. What is the equation where $M_{\infty} \gg 1$?

6 Boundary Conditions

1. The body surface is a stream line. (inviscid, irrotational flows)
2. Flow velocity must be tangent to body surface
3. Velocity vector has to be orthogonal to the unit normal of the body surface

The body surface is described by $f(x, y, z)$

$$
f(x, y, z)=0
$$

Boundary condition is expressed as

$$
\bar{Q} \cdot \nabla f(x, y, z)=0
$$

or

$$
u_{i} \frac{\partial f}{\partial x_{i}}=0
$$

Introducing the perturbation velocities

$$
\begin{gathered}
u=U_{\infty}+u^{\prime} \\
v=v^{\prime} \\
w=w^{\prime}
\end{gathered}
$$

Substituting,

$$
\left(U_{\infty}+u^{\prime}\right) \frac{\partial f}{\partial x}+v \frac{\partial f}{\partial y}+w^{\prime} \frac{\partial f}{\partial z}=0
$$

Since $u^{\prime} \ll U_{\infty}$, we may write:

$$
U_{\infty} \frac{\partial f}{\partial x}+v^{\prime} \frac{\partial f}{\partial y}+w^{\prime} \frac{\partial f}{\partial z}=0
$$

This equation must be satisfied on the surface of the body. Consider the two-dimensional case:

$$
\begin{gathered}
w^{\prime}=0 \\
\frac{\partial f}{\partial z}=0
\end{gathered}
$$

We obtain:

$$
\frac{v^{\prime}}{U_{\infty}}=-\frac{\partial f / \partial x}{\partial f / \partial y}=\frac{d y}{d x}
$$

Therefore $\frac{u^{-1}}{U_{\infty}}$ is the slope of the body (approximately) the slope of the streamline. Recall that

$$
\left.u^{\prime}=\frac{\partial \phi}{\partial y}=U_{\infty} \frac{d y}{d x}\right)_{\mathrm{BODY}}
$$

Now for thin bodies, a small angle of attack, $y_{\mathrm{BODY}} \approx 0$: this suggests an expansion of $\nu^{\prime}(x, y)$ in a powers of y :

$$
\begin{aligned}
& v^{\prime}(x, y)=v^{\prime}(x, 0)+\left(\frac{\partial v^{\prime}}{\partial y}\right)_{y=0} y+\ldots \\
\therefore & v(x, y)=v^{\prime}(x, 0) \cong U_{\infty}\left(\frac{d y}{d x}\right)_{\mathrm{BODY}}
\end{aligned}
$$

For three-dimensional planar flows

$$
\frac{\partial f}{\partial z} \cong 0
$$

and the boundary condition becomes

$$
v^{\prime}(x, 0, z)=U_{\infty}\left(\frac{\partial y}{\partial x}\right)_{\mathrm{BODY}}
$$

at infinity:

$$
\begin{aligned}
u^{\prime} & \rightarrow 0 \\
v^{\prime} & \rightarrow 0 \\
w^{\prime} & \rightarrow 0
\end{aligned}
$$

or w^{\prime}, v^{\prime}, and w^{\prime} are finite.

7 Linearized Pressure Coefficient

Let's revisit the pressure coefficient, c_{p} :

$$
c_{p} \equiv \frac{p-p_{\infty}}{\frac{1}{2} \rho_{\infty} U_{\infty}^{2}}
$$

where p is the pressure (local, static) at the location or point of interest in the flow field. Note that c_{p} is dimensionless.
Since,

$$
\frac{1}{2} \rho_{\infty} U_{\infty}^{2}=\frac{1}{2} \frac{\gamma p_{\infty}}{\gamma p_{\infty}} \rho_{\infty} U_{\infty}^{2}=\frac{\gamma}{2} p_{\infty} \frac{U_{\infty}^{2}}{a_{\infty}^{2}}=\frac{\gamma}{2} p_{\infty} M_{\infty}^{2}
$$

then

$$
c_{p}=\frac{2}{\gamma M_{\infty}^{2}}\left[\frac{p}{p_{\infty}}-1\right]
$$

for an inviscid, adiabatic, isentropic, steady flow and

$$
\bar{Q}=\left(U_{\infty}+u^{\prime}\right) \bar{i}+v^{\prime} \bar{j}+w^{\prime} \bar{k}
$$

We show that

$$
h+\frac{1}{2} Q^{2}=h_{\infty}+\frac{1}{2} U_{\infty}^{2}
$$

which for a calorically perfect gas leads directly to

$$
\begin{aligned}
\frac{T}{T_{\infty}} & =\frac{\gamma-1}{2} \frac{U_{\infty}^{2}-Q^{2}}{a_{\infty}^{2}} \\
& =1-\frac{\gamma-1}{2 a_{\infty}^{2}}\left[2 u^{\prime} U_{\infty}+u^{\prime 2}+v^{\prime 2}+w^{\prime 2}\right]
\end{aligned}
$$

Isentropic flow conditions lead to:

$$
\begin{gathered}
\frac{p}{p_{\infty}}=\left[\frac{T}{T_{\infty}}\right]^{\frac{\gamma}{\gamma-1}} \\
\frac{p}{p_{\infty}}=\left[1-\frac{\gamma-1}{2} M_{\infty}^{2}\left(\frac{2 u^{\prime}}{U_{\infty}}+\frac{u^{\prime 2}+v^{\prime 2}+w^{\prime 2}}{U_{\infty}^{2}}\right)\right]^{\frac{\gamma}{\gamma-1}}
\end{gathered}
$$

In the case of small velocity perturbations,

$$
\begin{aligned}
\frac{u^{\prime}}{U_{\infty}} & \ll 1 \\
\left(\frac{u^{\prime}}{U_{\infty}}\right)^{2} & \ll 1 \\
\left(\frac{v^{\prime}}{U_{\infty}}\right)^{2} & \ll 1 \\
\left(\frac{w^{\prime}}{U_{\infty}}\right)^{2} & \ll 1
\end{aligned}
$$

Using the binomial expansion, we show that

$$
\frac{p}{p_{\infty}}=1-\frac{\gamma}{2} M_{\infty}^{2}\left(2 \frac{u^{\prime}}{U_{\infty}}+\frac{u^{\prime 2}+v^{\prime 2}+w^{\prime 2}}{U_{\infty}^{2}}\right)+\ldots
$$

therefore:

$$
c_{p}=-\frac{2 u^{\prime}}{U_{\infty}}
$$

Discuss the limitations implied in the above expression for c_{p}.

8 Crocco's Theorem

Consider the motion of a fluid element. The fluid element may both translate and rotate. Let:

$$
\begin{gathered}
\bar{v}=\text { translational velocity } \\
\bar{w}=\text { rotational velocity } \\
\bar{\omega}=\text { angular velocity }
\end{gathered}
$$

where

$$
\begin{gathered}
\bar{w}=\frac{1}{2} \nabla \times \bar{v} \\
\nabla \times \bar{v} \equiv \text { vorticity }
\end{gathered}
$$

Combine Euler's equation, first and second laws of thermodynamics:

$$
\begin{gathered}
\rho \frac{\partial \bar{v}}{\partial t}+\rho(\bar{v} \cdot \nabla) \bar{\nabla}=-\nabla p \\
T \nabla s=\nabla h-v \nabla p=\nabla h-\frac{\nabla p}{\rho} \\
h=h_{0}-\frac{v^{2}}{2}
\end{gathered}
$$

We obtain:

$$
T \nabla s=\nabla h_{0}-\bar{v} \times(\nabla \times \bar{v})+\frac{\partial \bar{v}}{\partial t} \quad\{\text { Crocco's Theorem }
$$

For steady flow, we obtain

$$
T \nabla s=\nabla h_{0}-\bar{v} \times(\nabla \times \bar{v})
$$

or

$$
\bar{v} \times(\nabla \times \bar{v})=\nabla h_{0}-T \nabla s
$$

For two-dimensional, steady flows:

$$
2 w=\frac{1}{v}\left(T \frac{\partial s}{\partial n}-\frac{\partial h_{0}}{\partial n}\right)
$$

Vorticity \Longrightarrow rates of change of entropy and stagnation enthalpy normal to the streamlines Flow over a supersonic blunt body:

For this flow,

$$
\begin{gathered}
h_{0}=\text { constant } \\
\frac{\partial h_{0}}{h}=0 \\
\frac{\partial s}{\partial n} \neq 0 \quad \text { (why?) }
\end{gathered}
$$

MIT OpenCourseWare
https://ocw.mit.edu/

16.121 Analytical Subsonic Aerodynamics

Fall 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

