Brequet Range Equation

 $Range = \int_{t_i}^{t_j} V dt$ In level flight at const speed:

L = W, Lift = Weight T = D, Thrust = Drag

The aircraft weight changes during flight due to use of fuel. Relate weight change to time change:

$$dW = \frac{dW}{dt}dt$$
$$= -\frac{fuel \ weight}{time}dt$$
$$= -\frac{fuel \ weight}{time}T \ dt$$

The quantity:

$$\frac{fuel \ weight}{time} \frac{1}{T}$$

is known as the specific fuel consumption or sfc. It has units of:

sfc units =
$$\frac{lb^{(fuel)}}{lb - hr} or \frac{force}{force - time}$$

 $\Rightarrow dW = -sfc \cdot T dt$
 $\Rightarrow Range = -\int_{W_i}^{W_f} \frac{V}{sfc} \frac{1}{T} dW$

But since T = D and L = W we have:

Range = -		V	L	dW
	$- \int_{W_i}$	sfc	D	W

16.100 2002

This is the general form of the range equation. The Breguet range equation is found by assuming that $\frac{V}{sfc}\frac{L}{D}$ is constant for the entire flight. In that case:

$$Range = -\int_{W_i}^{W_f} \frac{V}{sfc} \frac{L}{D} \frac{dW}{W} = -\frac{V}{sfc} \frac{L}{D} \int_{W_i}^{W_f} \frac{dW}{W}$$

Breguet range equation:

$$Range = \frac{V}{sfc} \frac{L}{D} \log \frac{W_i}{W_f}$$