Solution Convergence

Recall for our triangular grid finite volume scheme, the basic iterative scheme looked like:

$$
R_{i}^{n} \equiv \text { residual of cell }
$$

$A_{i} \frac{U_{i}^{n+1}-U_{i}^{n}}{\Delta t}+\overbrace{\underbrace{\mathfrak{I}_{a b_{i}}^{n}+\mathfrak{J}_{b c_{i}}^{n}+\mathfrak{J}_{c a_{i}}^{n}}}=0$
Approximation of $\oint_{\dot{x}_{i i}}(F \vec{i}+G \vec{j}) \bullet \vec{n} d s$
$\Rightarrow \begin{array}{ll}U_{i}^{n+1}=U_{i}^{n}-\frac{\Delta t}{A_{i}} R_{i}^{n} \quad \begin{array}{l}\text { Update formula for cell } i \\ \text { to iteration } n+1 \text { from } \\ \text { iteration } n\end{array}\end{array}$
Suppose we are interested in the steady answer to our problem, i.e. $t=0$
$U^{0}=U_{\infty}^{0}=\left\{\begin{array}{l}\rho_{\infty} \\ \rho_{\infty} u_{\infty} \\ \rho_{\infty} v_{\infty} \\ \rho_{\infty} E_{\infty}\end{array}\right.$

Initial guess of uniform flow

answer as $t \rightarrow \infty$ when $\frac{d U}{d t}=0$ (steady-state)

