
Computational Methods for the Euler Equations

Before discussing the Euler Equations and computational methods for them, let’s
look at what we’ve learned so far:

 Method Assumptions/Flow type
2-D panel 2-D, Incompressible, Irrotational Inviscid

Vortex lattice 3-D, Incompressible, Irrotational Inviscid, Small
 disturbance

Potential method 3-D, Subsonic compressible, Irrotational, Inviscid,
Prandtl-Glauert Small disturbance

Euler CFD 3-D, Compressible (no ∞M limit), Rotational,
 Shocks, Inviscid

The only major effect missing after this week will be viscous-related effects.

2-D Euler Equations in Integral Form

Consider an arbitrary area (i.e. a fixed control volume) through which flows a
compressible inviscid flow:

≡nv outward pointing normal (unit length)
≡dS elemental (differential) surface length

jdxidydSn
vvv −=

Note: Path around surface is taken so that interior of control volume is on left.

y

x
c

dS

Cδ

nv

dSnv

dy

dx

dS

Computational Methods for the Euler Equations

16.100 2002 2

Conservation of Mass

Cinmassof

dA
dt
dchangeofrate

dACinMass

Cofout
flowmassofrate

Cinmassof
changeofrate

C

C

∫∫

∫∫
=⇒

=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

ρ

ρ

0

where fluidofdestiny≡ρ

Now, the rate of mass flowing out of C :
Mass flow out of ∫ =•=

C
udSnuC

δ
ρ vvv velocity vector

Conservation of x-momentum

Recall that: total rate of change momentum ∑= forces

For x-momentum this gives:

∑=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− Cofout

momflowxofrate
Cinmomentumx

ofchangeofrate
 Forces in x-direction

∫∫∫ ∑=•+
CC

dSnuuudA
dt
d

δ
ρρ vv Forces in x-direction

Now, looking closer at x-forces, for an inviscid compressible flow we only have
pressure (ignoring gravity).

Recall pressure acts normal to the surface

∫ •−=∑⇒
C

dSinpxinsForce
δ

vv

∫∫∫ =•+
CC

dSnudA
dt
d

δ
ρρ 0vv ⇒

dS

dSnpv−

Into surface

Normal to surface

Gives x-direction

Computational Methods for the Euler Equations

16.100 2002 3

Conservation of y-momentum

This follows exactly the same as the x-momentum:

Conservation of Energy

Recalling your thermodynamics:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Cto

addedheat
Cinfluid

ondonework
Cinenergyof

changeofratetotal

For the Euler equations, we ignore the possibility of heat addition.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Cofoutflow

energyofrate
Cinenergy

ofchangeofrate
Cinenergyof

changeofratetotal

The total energy of the fluid is:

)(
2
1 22 vueE ++= ρρρ

Note: Tce v= where ≡vc specific heat at constant volume

Static temperature

So,

∫∫ ∫ •+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

C C

dSnuEEdA
dt
d

Cinenergyof
changeofratetotal

δ

ρρ vv

The work done on the fluid is through pressure forces and is equal to the
pressure forces multiplied by (i.e. acting in) the velocity direction:
() ()∫ •−=

C

dSunpwork
δ

vv

∫∫ ∫ ∫ •−=•+
C C C

dSinpdSnuuudA
dt
d

δ δ

ρρ
vvvv

∫∫ ∫ ∫ •−=•+
C C C

dSjnpdSnuvvdA
dt
d

δ δ

ρρ
vvvv

Total
energy

Internal
energy Kinetic

energy

Pressure force

Computational Methods for the Euler Equations

16.100 2002 4

⇒

Summary of 2-D Euler Equations

∫∫ ∫ ∫

∫∫ ∫ ∫

∫∫ ∫ ∫

∫∫ ∫

•−=•+

•−=•+

•−=•+

=•+

C C C

C C C

C C C

C C

dSnnpdSnuEEdA
dt
d

dSjnpdSnuvvdA
dt
d

dSinpdSnuuudA
dt
d

dSnudA
dt
d

δ δ

δ δ

δ δ

δ

ρρ

ρρ

ρρ

ρρ

vvvv

vvvv

vvvv

vv 0

These are often written very compactly as:

()∫∫ ∫ =•++
c sc

dsnjGiFUdA
dt
d 0vvv

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

≡

E
v
u

U

ρ
ρ
ρ
ρ

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
≡

uH
uv

pu
u

F

ρ
ρ
ρ

ρ
2

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
≡

vH
pv

vu
v

G

ρ
ρ

ρ
ρ

2

ρ
pEenthalpytotalH +≡≡

Ideal gas: ⎥⎦
⎤

⎢⎣
⎡ +−−==)(

2
1)1(22 vuERTp ρργρ

A Finite Volume Scheme for the 2-D Euler Eqns.

Here’s the basic idea:
(1) Divide up (i.e. discretize) the domain into simple geometric shapes (triangles

and quads)

∫∫ ∫ ∫ •−=•+
C C C

dSunpdSnuEEdA
dt
d

δ δ

ρρ vvvv

Conservative
state vector

Flux vector
for x-direction

Flux vector for
y-direction

Computational Methods for the Euler Equations

16.100 2002 5

Looking at this small region:

Cell 0 is surrounded by cells 1, 2, & 3.
i.e. cell 0 has 3 neighbors: cell 1, 2, & 3.

 Nearest neighbors

9

0

10
8

2 1
7

6
5

4
3

11
12

13

Computational Methods for the Euler Equations

16.100 2002 6

 (2) Decide how to place the unknowns in the grid.
 (a) Cell-centered: cell-average values of the conservative state vector are
 stored for each cell.
 (b) Node-based: point values of the conservative state vector are stored at
 each node.
 The debate still rages about which of these options is best. We will look at cell-
 centered schemes because these are easiest (although not necessarily the
 best). Also, they are very widely used in the aerospace industry.

(3) Approximate the 2-D integral Euler equation on the grid to determine the
 chosen unknowns.

Computational Methods for the Euler Equations

16.100 2002 7

Computational Methods for the Euler Equations

16.100 2002 8

Computational Methods for the Euler Equations

16.100 2002 9

Computational Methods for the Euler Equations

16.100 2002 10

Let’s look in detail at step (3):

Cell-average unknowns:

()
()
() ⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0

0

0

0

0

E
v
u

U

ρ
ρ
ρ
ρ

()
()
() ⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1

1

1

1

1

E
v
u

U

ρ
ρ
ρ
ρ

 2 =U 3 =U

Specifically, we define 0U as:

∫∫≡
00

0
1

C
UdA

A
U where

⎩
⎨
⎧

≡
≡

0
0

0

0

cellofareaA
cellC

Now, we apply conservation eqns:

()∫∫ ∫ =•++
0 0

0
C C

dSnjGiFUdA
dt
d

δ

vvv

The time-derivative term can be simplified a little:

∫∫ =
0

0
0C dt

dU
AUdA

dt
d

The surface flux integral can also be simplified a little:
() ()

()

()∫
∫

∫∫

•++

•++

•+=•+

a

c

c

b

b

aC

dSnjGiF

dSnjGiF

dSnjGiFdsnjGiF

vvv

vvv

vvvvvv

0δ

f b e

a c

d

12

0

3

Cells: 0,1, 2, 3
Nodes: a, b, c, d, e, f

Computational Methods for the Euler Equations

16.100 2002 11

Combining these expressions:

Now, we make some approximations. Let’s look at the surface integral from

ba → :

 ()∫ •+
b

a
dsnjGiF vvv

The normal can easily be calculated since the face is a straight line between
nodes a & b. Recall, the unknowns are stored at all centers. So, what would be a
logical approximation for :
()∫ =•+

b

a abdSnjGiF ???vvv

 Option #1=
 Option #2=
Note: Option #1 ≠ option #2 in general.

There is very little difference in practice between these options. Let’s stick with:

() () ()

() () ()

() () () caca

a

c caca

bcbc

c

b bcbc

ababab

b

aab

snjGGiFFdSnjGiF

SnjGGiFFdSnjGiF

SnjGGiFFdSnjGiF

∆•⎥⎦
⎤

⎢⎣
⎡ +++=•+≡ℑ

∆•⎥⎦
⎤

⎢⎣
⎡ +++=•+≡ℑ

∆•⎥⎦
⎤

⎢⎣
⎡ +++=•+≡ℑ

∫

∫

∫

vvvvv

vvvvvv

vvvvvv

3030

2020

1010

2
1

2
1

2
1

2
1

2
1

2
1

 Where

()
()
()
()33

22

11

00

UFF
UFF
UFF
UFF

≡
≡
≡
≡

()
()
()
()33

22

11

00

UGG
UGG
UGG
UGG

≡
≡
≡
≡

() ()

()∫

∫ ∫
=•++

•++•++

a

c

b

a

c

b

dSnjGiF

dSnjGiFdSnjGiF
dt

dU
A

0

0
0

vvv

vvvvvv

b

ac
2 1
 0

 3

abnv

No approximations so far!

Computational Methods for the Euler Equations

16.100 2002 12

Finally, we have to approximate
dt

dUA 0
0 somehow. The simplest approach is

forward Euler:

 00
0 =ℑ+ℑ+ℑ+ cabcabdt

dU
A

And n

abℑ etc. are defined as:

() ()
()
()nn

nn

abab
nnnnn

ab

UFF

etcUFF

SnjGGiFF

11

00

1010

.
2
1

2
1

≡

≡

∆•⎥⎦
⎤

⎢⎣
⎡ +++≡ℑ vvv

For steady solution, basic procedure is to make a guess of U at 0=t and then
iterate until the solution no longer changes. This is called time marching.

Question
What assumptions have we made in developing our 2-D Euler Equation Finite
Volume Method?

 00
1

0
0 =ℑ+ℑ+ℑ+

∆
−+

n
ca

n
bc

n
ab

nn

t
UU

A

Where ()n
o

n
o tUU ≡ and iterationntntn ≡∆≡ ,

