
Computational Methods for the Euler Equations 
 

Before discussing the Euler Equations and computational methods for them, let’s 
look at what we’ve learned so far: 
 
    Method                                  Assumptions/Flow type                                                  
2-D panel                                  2-D, Incompressible, Irrotational Inviscid 
 
Vortex lattice                             3-D, Incompressible, Irrotational Inviscid, Small  
                                                 disturbance 
 
Potential method                      3-D, Subsonic compressible, Irrotational, Inviscid,  
Prandtl-Glauert                         Small disturbance 
 
 
 
Euler CFD                                3-D, Compressible (no ∞M  limit), Rotational,  
                                                 Shocks, Inviscid 
 
The only major effect missing after this week will be viscous-related effects. 
 

2-D Euler Equations in Integral Form 
 
Consider an arbitrary area (i.e. a fixed control volume) through which flows a 
compressible inviscid flow: 
 
 
 
 
 
 
 
 
 
 
 
 
≡nv outward pointing normal (unit length) 
≡dS  elemental (differential) surface length 
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Note: Path around surface is taken so that interior of control volume is on left. 
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Conservation of Mass 
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Now, the rate of mass flowing out of C : 
Mass flow out of ∫ =•=
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Conservation of x-momentum 
 
Recall that: total rate of change momentum ∑= forces 
 
For x-momentum this gives: 
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Now, looking closer at x-forces, for an inviscid compressible flow we only have 
pressure (ignoring gravity). 
 
Recall pressure acts normal to the surface 
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Conservation of y-momentum 
 
This follows exactly the same as the x-momentum: 
 
 
 
 
 
Conservation of Energy 
 
Recalling your thermodynamics: 
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For the Euler equations, we ignore the possibility of heat addition. 
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The total energy of the fluid is: 
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Note:    Tce v=   where ≡vc specific heat at constant volume 
 
 
Static temperature 
 
So, 
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The work done on the fluid is through pressure forces and is equal to the 
pressure forces multiplied by (i.e. acting in) the velocity direction: 
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⇒  
 
 
Summary of 2-D Euler Equations 
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These are often written very compactly as: 
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A Finite Volume Scheme for the 2-D Euler Eqns. 
 
Here’s the basic idea: 
(1) Divide up (i.e. discretize) the domain into simple geometric shapes (triangles  

and quads) 
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Looking at this small region: 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
Cell 0 is surrounded by cells 1, 2, & 3. 
i.e. cell 0 has 3 neighbors: cell 1, 2, & 3. 
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  (2) Decide how to place the unknowns in the grid. 
       (a) Cell-centered: cell-average values of the conservative state vector are  
            stored for each cell. 
       (b) Node-based: point values of the conservative state vector are stored at    
             each node. 
   The debate still rages about which of these options is best. We will look at cell-   
   centered schemes because these are easiest (although not necessarily the       
   best). Also, they are very widely used in the aerospace industry. 
    
(3) Approximate the 2-D integral Euler equation on the grid to determine the  
 chosen unknowns. 
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Let’s look in detail at step (3): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Cell-average unknowns: 
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Specifically, we define 0U  as: 
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Now, we apply conservation eqns: 
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The time-derivative term can be simplified a little: 
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Combining these expressions: 
 
 
 
 
  
 
 
 
Now, we make some approximations. Let’s look at the surface integral from 

ba → : 
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The normal can easily be calculated since the face is a straight line between 
nodes a & b. Recall, the unknowns are stored at all centers. So, what would be a 
logical approximation for : 
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Note: Option #1 ≠  option #2 in general. 
 
There is very little difference in practice between these options. Let’s stick with: 
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No approximations so far! 
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Finally, we have to approximate 
dt

dUA 0
0  somehow. The simplest approach is 

forward Euler: 
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For steady solution, basic procedure is to make a guess of U  at 0=t  and then 
iterate until the solution no longer changes. This is called time marching. 
 
 
 
Question 
What assumptions have we made in developing our 2-D Euler Equation Finite 
Volume Method? 
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