Computational Methods for the Euler Equations

Before discussing the Euler Equations and computational methods for them, let's look at what we've learned so far:
Method

2-D panel
Vortex lattice

Potential method
Prandtl-Glauert

Assumptions/Flow type
2-D, Incompressible, Irrotational Inviscid
3-D, Incompressible, Irrotational Inviscid, Small disturbance

3-D, Subsonic compressible, Irrotational, Inviscid, Small disturbance

Euler CFD

3-D, Compressible (no M_{∞} limit), Rotational, Shocks, Inviscid

The only major effect missing after this week will be viscous-related effects.

2-D Euler Equations in Integral Form

Consider an arbitrary area (i.e. a fixed control volume) through which flows a compressible inviscid flow:

$\vec{n} \equiv$ outward pointing normal (unit length)
$d S \equiv$ elemental (differential) surface length
$\vec{n} d S=d y \vec{i}-d x \vec{j}$

Conservation of Mass
$\binom{$ rate of change }{ of mass in $C}+\binom{$ rate of mass flow }{ out of $C}=0$
Mass in $C=\iint_{C} \rho d A$
where $\rho \equiv$ destiny of fluid
\Rightarrow rate of change $=\frac{d}{d t} \iint_{C} \rho d A$
of mass in C

Now, the rate of mass flowing out of C :
Mass flow out of $C=\oint_{ס C} \rho \vec{u} \bullet \vec{n} d S \quad \vec{u}=$ velocity vector
$\Rightarrow \quad \frac{d}{d t} \iint_{C} \rho d A+\oint_{\partial C} \rho \vec{u} \bullet \vec{n} d S=0$

Conservation of x-momentum

Recall that: total rate of change momentum $=\sum$ forces
For x-momentum this gives:
$\binom{$ rate of change of }{$x-$ momentum in $C}+\binom{$ rate of x-momflow }{ out of $C}=\sum$ Forces in x-direction
$\frac{d}{d t} \iint_{C} \rho u d A+\oint_{\varnothing C} \rho u \vec{u} \bullet \vec{n} d S=\sum$ Forces in x-direction
Now, looking closer at x-forces, for an inviscid compressible flow we only have pressure (ignoring gravity).

Recall pressure acts normal to the surface

$\Rightarrow \sum$ Force sin $x=-\oint_{\delta C} p \vec{n} \bullet \vec{i} d S$
Gives x-direction

$$
\frac{d}{d t} \iint_{C} \rho u d A+\oint_{\delta C} \rho u \vec{u} \bullet \vec{n} d S=-\oint_{\delta C} p \vec{n} \bullet \vec{i} d S
$$

Conservation of y-momentum

This follows exactly the same as the x-momentum:

$$
\frac{d}{d t} \iint_{C} \rho v d A+\oint_{\otimes C} \rho v \vec{u} \bullet \vec{n} d S=-\oint_{\infty} p \vec{n} \bullet \vec{j} d S
$$

Conservation of Energy

Recalling your thermodynamics:
$\binom{$ total rate of change }{ of energy in $C}=\binom{$ work done on }{ fluid in $C}+\binom{$ heat added }{ to $C}$
For the Euler equations, we ignore the possibility of heat addition.
$\binom{$ total rate of change }{ of energy in $C}=\binom{$ rate of change of }{ energy in $C}+\binom{$ rate of energy }{ flow out of $C}$
The total energy of the fluid is:

Note: $\quad e=c_{v} T$ where $c_{v} \equiv$ specific heat at constant volume
Static temperature
So,
$\binom{$ total rate of change }{ of energy in $C}=\frac{d}{d t} \iint_{C} \rho E d A+\oint_{\delta C} \rho E \vec{u} \bullet \vec{n} d S$
The work done on the fluid is through pressure forces and is equal to the pressure forces multiplied by (i.e. acting in) the velocity direction:
$($ work $)=\oint_{\otimes C}(-p \vec{n}) \bullet \vec{u} d S$
Pressure force
$\Rightarrow \quad \frac{d}{d t} \iint_{C} \rho E d A+\oint_{\infty} \rho E \vec{u} \bullet \vec{n} d S=-\oint_{\triangle C} p \vec{n} \bullet \vec{u} d S$
Summary of 2-D Euler Equations
$\frac{d}{d t} \iint_{C} \rho d A+\oint_{\varnothing C} \rho \vec{u} \bullet \vec{n} d S=0$
$\frac{d}{d t} \iint_{C} \rho u d A+\oint_{\infty} \rho u \vec{u} \bullet \vec{n} d S=-\oint_{\infty} p \vec{n} \bullet \vec{i} d S$
$\frac{d}{d t} \iint_{C} \rho v d A+\oint_{\varnothing C} \rho v \vec{u} \bullet \vec{n} d S=-\oint_{\varnothing C} p \vec{n} \bullet \vec{j} d S$
$\frac{d}{d t} \iint_{C} \rho E d A+\oint_{\delta C} \rho E \vec{u} \bullet \vec{n} d S=-\oint_{\delta C} p \vec{n} \bullet \vec{n} d S$
These are often written very compactly as:
$\frac{d}{d t} \iint_{C} U d A+\oint_{s c}(F \vec{i}+G \vec{j}) \bullet \vec{n} d s=0$

$H \equiv$ total enthalpy $\equiv E+p / \rho$
Ideal gas: $\quad p=\rho R T=(\gamma-1)\left[\rho E-\frac{1}{2} \rho\left(u^{2}+v^{2}\right)\right]$
A Finite Volume Scheme for the 2-D Euler Eqns.
Here's the basic idea:
(1) Divide up (i.e. discretize) the domain into simple geometric shapes (triangles and quads)

Looking at this small region:

Cell 0 is surrounded by cells $1,2, \& 3$.
i.e. cell 0 has 3 neighbors: cell 1, 2, \& 3 .

Nearest neighbors
(2) Decide how to place the unknowns in the grid.
(a) Cell-centered: cell-average values of the conservative state vector are stored for each cell.
(b) Node-based: point values of the conservative state vector are stored at each node.
The debate still rages about which of these options is best. We will look at cellcentered schemes because these are easiest (although not necessarily the best). Also, they are very widely used in the aerospace industry.
(3) Approximate the 2-D integral Euler equation on the grid to determine the chosen unknowns.

Let's look in detail at step (3):

Cells: 0,1, 2, 3 Nodes: a, b, c, d, e, f

Cell-average unknowns:
$U_{0}=\left[\begin{array}{l}\rho_{0} \\ (\rho u)_{0} \\ (\rho v)_{0} \\ (\rho E)_{0}\end{array}\right]$
$U_{1}=\left[\begin{array}{l}\rho_{1} \\ (\rho u)_{1} \\ (\rho v)_{1} \\ (\rho E)_{1}\end{array}\right]$
$U_{2}=$.
$U_{3}=$

Specifically, we define U_{0} as:
$U_{0} \equiv \frac{1}{A_{0}} \iint_{C_{0}} U d A \quad$ where $\left\{\begin{array}{l}C_{0} \equiv \text { cell } 0 \\ A_{0} \equiv \text { area of cell } 0\end{array}\right.$

Now, we apply conservation eqns:
$\frac{d}{d t} \iint_{C_{0}} U d A+\oint_{\delta C_{0}}(F \vec{i}+G \vec{j}) \bullet \vec{n} d S=0$
The time-derivative term can be simplified a little:
$\frac{d}{d t} \iint_{C_{0}} U d A=A_{0} \frac{d U_{0}}{d t}$
The surface flux integral can also be simplified a little:

$$
\begin{aligned}
\oint_{\delta C_{0}}(F \vec{i}+G \vec{j}) \bullet \vec{n} d s= & \int_{a}^{b}(F \vec{i}+G \vec{j}) \bullet \vec{n} d S \\
& +\int_{b}^{c}(F \vec{i}+G \vec{j}) \bullet \vec{n} d S \\
& +\int_{c}^{a}(F \vec{i}+G \vec{j}) \bullet \vec{n} d S
\end{aligned}
$$

Combining these expressions:

$$
\begin{aligned}
A_{0} \frac{d U_{0}}{d t} & +\int_{a}^{b}(F \vec{i}+G \vec{j}) \bullet \vec{n} d S+\int_{b}^{c}(F \vec{i}+G \vec{j}) \bullet \vec{n} d S \\
& +\int_{c}^{a}(F \vec{i}+G \vec{j}) \bullet \vec{n} d S=0
\end{aligned}
$$

No approximations so far!

Now, we make some approximations. Let's look at the surface integral from $a \rightarrow b$:

$$
\int_{a}^{b}(F \vec{i}+G \vec{j}) \bullet \vec{n} d s
$$

The normal can easily be calculated since the face is a straight line between nodes a \& b. Recall, the unknowns are stored at all centers. So, what would be a logical approximation for :
$\int_{a}^{b}(F \vec{i}+G \vec{j}) \bullet \vec{n}_{a b} d S=$???
Option \#1=
Option \#2=
Note: Option \#1 \neq option \#2 in general.
There is very little difference in practice between these options. Let's stick with:

$$
\begin{aligned}
& \mathfrak{J}_{a b} \equiv \int_{a}^{b}(F \vec{i}+G \vec{j}) \bullet \vec{n}_{a b} d S=\left[\frac{1}{2}\left(F_{0}+F_{1}\right) \vec{i}+\frac{1}{2}\left(G_{0}+G_{1}\right) \vec{j}\right] \bullet \vec{n}_{a b} \Delta S_{a b} \\
& \Im_{b c} \equiv \int_{b}^{c}(F \vec{i}+G \vec{j}) \bullet \vec{n}_{b c} d S=\left[\frac{1}{2}\left(F_{0}+F_{2}\right) \vec{i}+\frac{1}{2}\left(G_{0}+G_{2}\right) \vec{j}\right] \bullet \vec{n}_{b c} \Delta S_{b c} \\
& \Im_{c a} \equiv \int_{c}^{a}(F \vec{i}+G \vec{j}) \bullet n_{c a} d S=\left[\frac{1}{2}\left(F_{0}+F_{3}\right) \vec{i}+\frac{1}{2}\left(G_{0}+G_{3}\right) \vec{j}\right] \bullet \vec{n}_{c a} \Delta s_{c a}
\end{aligned}
$$

Where

$$
\begin{array}{ll}
F_{0} \equiv F\left(U_{0}\right) & G_{0} \equiv G\left(U_{0}\right) \\
F_{1} \equiv F\left(U_{1}\right) & G_{1} \equiv G\left(U_{1}\right) \\
F_{2} \equiv F\left(U_{2}\right) & G_{2} \equiv G\left(U_{2}\right) \\
F_{3} \equiv F\left(U_{3}\right) & G_{3} \equiv G\left(U_{3}\right)
\end{array}
$$

Finally, we have to approximate $A_{0} \frac{d U_{0}}{d t}$ somehow. The simplest approach is forward Euler:

$$
A_{0} \frac{d U_{0}}{d t}+\mathfrak{J}_{a b}+\mathfrak{J}_{b c}+\mathfrak{J}_{c a}=0
$$

$$
A_{0} \frac{U_{0}^{n+1}-U_{0}^{n}}{\Delta t}+\mathfrak{J}_{a b}^{n}+\mathfrak{J}_{b c}^{n}+\mathfrak{I}_{c a}^{n}=0
$$

Where $U_{o}^{n} \equiv U_{o}\left(t^{n}\right)$ and $t^{n} \equiv n \Delta t, n \equiv$ iteration
And $\mathfrak{I}_{a b}^{n}$ etc. are defined as:

$$
\begin{aligned}
\mathfrak{J}_{a b}^{n} & \equiv\left[\frac{1}{2}\left(F_{0}^{n}+F_{1}^{n}\right) \stackrel{1}{i}+\frac{1}{2}\left(G_{0}^{n}+G_{1}^{n}\right) \stackrel{\rightharpoonup}{j}\right] \bullet \vec{n}_{a b} \Delta S_{a b} \\
F_{0}^{n} & \equiv F\left(U_{0}^{n}\right) \quad \text { etc. } \\
F_{1}^{n} & \equiv F\left(U_{1}^{n}\right)
\end{aligned}
$$

For steady solution, basic procedure is to make a guess of U at $t=0$ and then iterate until the solution no longer changes. This is called time marching.

Question

What assumptions have we made in developing our 2-D Euler Equation Finite Volume Method?

