
Three-Dimensional Wall Effects

In a freestream, recall that a lifting body can e modeled by a horseshoe vortex:

Consider a rectangular cross-section tunnel:

Flow is into page

The image system for this looks like:

	•	•	•	
	•	•	•	
	•	•	•	
	images	images	images	
•••			う (•••
	images	actual tunnel	images	
• • •	· Č · J	(••)	Č)	•••
	images	images	images	
•••	· • ·	J (•	う (・	•••
	•	•	•	
	•	•	•	

The effect of these images is:

For fixed lift, such that Γ is constant,

* an upwash exists due to images $\Rightarrow \alpha$ is effectively larger

	$=$ α_{tunnel}	+ $\Delta \alpha_i$
effective	AOA of	correction due to
freestream	model in	upwash induced by
AOA	tunnel	images

* Similarly, this creates decrease in induced drag relative to freestream flight:

Recall,

$$C_{D_{i}} \propto C_{L}\alpha_{i}$$

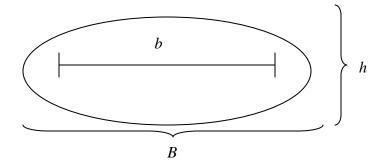
$$\Rightarrow \Delta C_{D_{i}} = C_{L}\Delta\alpha_{i}$$

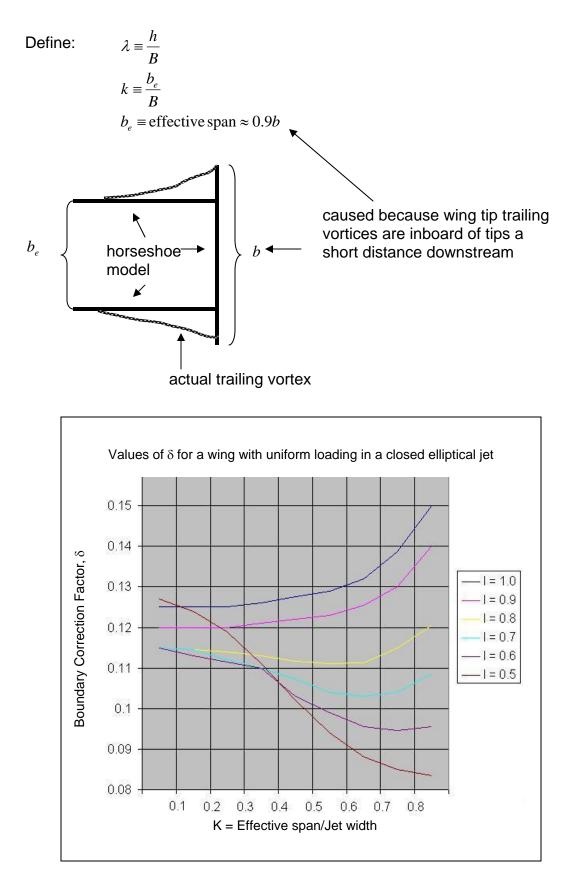
$$\Rightarrow C_{D_{i_{\infty}}} = C_{D_{i_{tunnel}}} + \Delta C_{D_{i}}$$

Or, since we are interested in the total drag:

$$C_{D_{\infty}} = C_{D_{tunnel}} + \Delta C_{D_i}$$

Specific formulas derived in detailed analysis give that:


$$\Delta \alpha_i = \delta(\frac{S}{C})C_L$$


where S = reference area

C =tunnel cross - sectional area

 δ = factor which depends on tunnel & model geometry

Wright Brothers is an elliptic cross-section with dimensions 10 ft wide by 7 ft high.

