Three-Dimensional Wall Effects

In a freestream, recall that a lifting body can e modeled by a horseshoe vortex:

Consider a rectangular cross-section tunnel:

Flow is into page

The image system for this looks like:

The effect of these images is:
For fixed lift, such that Γ is constant,

* an upwash exists due to images $\Rightarrow \alpha$ is effectively larger

* Similarly, this creates decrease in induced drag relative to freestream flight:

Recall,

$$
\begin{aligned}
& C_{D_{i}} \propto C_{L} \alpha_{i} \\
\Rightarrow & \Delta C_{D_{i}}=C_{L} \Delta \alpha_{i} \\
\Rightarrow & C_{D_{i_{0}}}=C_{D_{D_{\text {iummel }}}}+\Delta C_{D_{i}}
\end{aligned}
$$

Or, since we are interested in the total drag:

$$
C_{D_{\infty}}=C_{D_{\text {uumel }}}+\Delta C_{D_{i}}
$$

Specific formulas derived in detailed analysis give that:

$$
\Delta \alpha_{i}=\delta\left(\frac{S}{C}\right) C_{L}
$$

where $S=$ reference area
$C=$ tunnel cross - sectional area
$\delta=$ factor which depends on tunnel \& model geometry
Wright Brothers is an elliptic cross-section with dimensions 10 ft wide by 7 ft high.

Define: $\quad \lambda \equiv \frac{h}{B}$

$$
k \equiv \frac{b_{e}}{B}
$$

$b_{e} \equiv$ effective span $\approx 0.9 b$

