Similarity in Wind Tunnel Testing

In terms of non-dimensional force and moment coefficients, these depend on numerous non-dimensional input parameters.

$$C_L = C_L(M_{\infty}, \text{Re}, \alpha, \dots)$$

$$C_D = C_D(M_{\infty}, \text{Re}, \alpha, \dots)$$

In many aerodynamic applications,

$$C_L = C_L(M_{\infty}, \text{Re}, \alpha)$$
$$C_D = C_D(M_{\infty}, \text{Re}, \alpha)$$

So, to match flight condition $C_L \& C_D$ in an experiment, we should match flight M_{∞} , Re, and α .

* Matching α is relatively easy

* How about simultaneous M_{∞} & Re matching?

$$M_{\infty} = \frac{V_{\infty}}{a_{\infty}}$$
 $\operatorname{Re} = \frac{\rho_{\infty}V_{\infty}L}{\mu_{\infty}}$

Consider the Wright Brothers Wind Tunnel:

* a_{∞} is the atmospheric speed of sound at ground level to good approximation

$$\Rightarrow \qquad M_T = M_{\infty}$$
$$V_T = V_{\infty} \frac{a_T}{a_{\infty}}$$

For altitudes from 0-30k ft., a_{∞} varies by only about ~15%.

$$\Rightarrow V_T \approx V_{\infty} ! \qquad \qquad a_{ok} \approx 1100 \text{ ft/sec} \\ a_{20k} \approx 950 \text{ ft/sec} \end{cases}$$

Since Wright Brothers Wind Tunnel is limited to about $V_T < 200$ mph, we can't match M_{∞} unless it is low.

* For M_{∞} low, say $M_{\infty} \approx 0.3$, the effects of M_{∞} are small. So, in this case, we only need match Re:

$$\operatorname{Re}_{T} = \operatorname{Re}_{\infty}$$
$$\frac{\rho_{T} V_{T} L_{T}}{\mu_{T}} = \frac{\rho_{\infty} V_{\infty} L_{\infty}}{\mu_{\infty}}$$

Consider VAT @ T/O and the use of WBWT to simulate it:

 $\rho_{\rm T}, \mu_{\rm T}, \rho_{\rm \infty} \,\&\, \mu_{\rm \infty}$ are essentially the same \Rightarrow ground conditions.

$$\Rightarrow V_T L_T = V_{\infty} L_{\infty}$$
$$\frac{L_T}{L_{\infty}} = \frac{V_T}{V_{\infty}}$$

For T/O, $V_{\infty} \approx 200 \text{ mph}$ Max V_T , $V_T \leq 200 \text{ mph}$

$$\Rightarrow \frac{L_T}{L_{\infty}} \cong 1!$$

Transonic & Supersonic Tests

In the case where M_{∞} is larger than about 0.3, we need to consider matching of M_{∞} & Re in the tunnel.

What can be done?

$$M_T = M_{\infty} \Longrightarrow \frac{V_T}{a_T} = \frac{V_{\infty}}{a_{\infty}}$$
$$\operatorname{Re}_T = \operatorname{Re}_{\infty} \Longrightarrow \frac{\rho_T V_T L_T}{\mu_T} = \frac{\rho_{\infty} V_{\infty} L_{\infty}}{\mu_{\infty}}$$

Note: $a = \sqrt{\gamma RT}$ $\mu = \mu(T)$ for ideal gas $\rho = \frac{p}{(RT)}$

So, V_T is largely set by M_{∞} and the values of a_T , which are achievable. Typically $V_T = O(V_{\infty})$

Then, how can we match Re?

Note: we would like to reduce L_T from L_∞ to reduce model & tunnel size.

$$\frac{\rho_T}{\mu_T} = \frac{p_T / RT_T}{\mu_T} = \frac{p_T}{RT_T \mu_T (T_T)}$$

One possible approach: increase pressure in tunnel.

Engineering Solutions to M_{∞} & Re Matching

Traditionally:

- \ast Test at ${\rm Re}_{\scriptscriptstyle \infty}$ but neglect $M_{\scriptscriptstyle \infty}$ match if $M_{\scriptscriptstyle \infty}$ is low
- * Test at M_{∞} , trip boundary layers, ignore Re match at high Re (Re > 10⁶)
- * Estimate effects of not matching comp. & flight tests