Problem \#1

Assume:

- Incompressible
- 2-D flow $\Rightarrow V_{z}=0, \frac{\partial}{\partial z}=0$
- Steady $\Rightarrow \frac{\partial}{\partial t}=0$
- Parallel $\Rightarrow V_{r}=0$
a) Conservation of mass for a 2-D flow is:

$$
\begin{aligned}
& \frac{1}{r} \frac{\partial}{\partial r}(\underbrace{\underbrace{}_{=0}}_{=0})+\frac{1}{r} \frac{\partial}{\partial \theta}\left(V_{\theta}\right)=0 \\
& \Rightarrow \frac{\partial}{\partial \theta}\left(V_{\theta}\right)=0 \Rightarrow V_{\theta} \text { does not depend on } \theta \\
& \Rightarrow V_{\theta}=V_{\theta}(r)
\end{aligned}
$$

b) θ-mometum equation is:

$$
\underbrace{\frac{\partial V_{\theta}}{\partial t}}_{\text {steady }}+(\vec{V} \cdot \nabla) V_{\theta}+\underbrace{\frac{Y_{\theta}}{r}}_{V_{r}=0}=-\frac{1}{\rho r} \frac{\partial p}{\partial \theta}+\nu(\nabla^{2} V_{\theta}+\frac{2}{r^{2}} \underbrace{\frac{\partial V_{r}}{\partial \delta}}_{V_{r}=0}-\frac{V_{\theta}}{r^{2}})
$$

In cylindrical coordinates:

$$
(\vec{V} \cdot \nabla)=\underbrace{\searrow}_{=0} \frac{\partial}{\partial r}+\frac{1}{r} V_{\theta} \frac{\partial}{\partial \theta}
$$

Thus,

$$
(\vec{V} \cdot \nabla) V_{\theta}+\frac{1}{r} V_{\theta} \underbrace{\frac{>V_{\theta}}{\partial \partial}}_{\substack{=0 \text { from } \\ \text { continuity }}}=0
$$

Also,

$$
\nabla^{2} V_{\theta}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial V_{\theta}}{\partial r}\right)+\underbrace{\frac{\partial^{2} V_{\theta}}{r^{2}} \frac{\partial}{\partial}}_{=0}
$$

Combining all of these results gives:

$$
\frac{1}{\rho r} \frac{\partial p}{\partial \theta}=\underbrace{v\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial V_{\theta}}{\partial r}\right)-\frac{V_{\theta}}{r^{2}}\right]}_{\text {this side is independent of } \theta}
$$

Since the right-hand-side (RHS) is independent of θ, this requires that $\frac{\partial p}{\partial \theta}=$ constant for fixed r. But as θ varies from $0 \rightarrow 2 \pi$, it must be equal at $0 \& 2 \pi$, that is $p(\theta=0)=p(\theta=2 \pi)$. If not, the solution would be discontinuous.
Thus, $\frac{\partial p}{\partial \theta}=0 \Leftarrow$ constant must be zero!
The differential equation for V_{θ} is:

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial V_{\theta}}{\partial r}\right)-\frac{V_{\theta}}{r^{2}}=0
$$

A little rearranging gives:

$$
\frac{d}{d r}\left[\frac{1}{r} \frac{d}{d r}\left(r V_{\theta}\right)\right]=0
$$

Integrating once gives:

$$
\frac{1}{r} \frac{d}{d r}\left(r V_{\theta}\right)=C_{1}
$$

Integrating again gives:

$$
\begin{aligned}
& r V_{\theta}=\frac{1}{2} C_{1} r^{2}+C_{2} \\
\Rightarrow & V_{\theta}=\frac{1}{2} C_{1} r+\frac{C_{2}}{r}
\end{aligned}
$$

Next, we must apply the no-slip boundary conditions to find V_{θ}. Specifically,

$$
\begin{aligned}
& \text { at } r=r_{o}, V_{\theta}=\omega_{o} r_{o} \\
& \text { at } r=r_{1}, V_{\theta}=\omega_{1} r_{1}
\end{aligned}
$$

because flow velocity equals wall velocity in a viscous flow.
So, apply $r=r_{o} \& r=r_{1}$ bc's:

Or, rearranged a little gives:

$$
V_{\theta}=r_{o} \omega_{o} \frac{r_{1} / r-r / r_{1}}{r_{1} / r_{o}-r_{o} / r_{1}}+r_{1} \omega_{1} \frac{r / r_{o}-r_{o} / r}{r_{1} / r_{o}-r_{o} / r_{1}}
$$

c) The radial momentum equation is:

$$
\frac{\partial V_{r}}{\partial t}+(\vec{V} \cdot \nabla) V_{r}-\frac{1}{r} V_{\theta}^{2}=-\frac{1}{\rho} \frac{\partial p}{\partial r}+v\left(\nabla^{2} V_{r}-\frac{V_{r}}{r^{2}}-\frac{2}{r^{2}} \frac{\partial V_{\theta}}{\partial \theta}\right)
$$

But $V_{r}=0 \& \frac{\partial V_{\theta}}{\partial \theta}=0$ so this reduces to:

$$
\frac{\partial p}{\partial r}=\frac{\rho V_{\theta}^{2}}{r}
$$

Since $\frac{\rho V_{\theta}^{2}}{r} \geq 0$ always, then clearly $\frac{\partial p}{\partial r} \geq 0$.
Thus, pressure increases with r.
d) On the inner cylinder, the moment is a result of the skin friction due to the fluid shear stress. For this flow in which only $V_{\theta} \neq 0$ and is only a function of r, the only non-zero shear stress is $\tau_{r \theta}$ and has the following form:

$$
\tau_{r \theta}=\mu \underbrace{\left(\frac{\partial V_{\theta}}{\partial r}-\frac{V_{\theta}}{r}\right)}_{\substack{=\varepsilon_{r, \theta}, \text { the only } \\ \text { non-zero strain }}}=\mu\left[r \frac{\partial}{\partial r}\left(\frac{V_{\theta}}{r}\right)\right]
$$

Rotating Cylinders

For the problem you studied in the homework:

1. What direction is the fluid element acceleration?
2. What direction are the net pressure forces on a fluid element?
3. What direction are the net viscous forces on a fluid element?
