
Problem #1 
 

Assume:  
• Incompressible 
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a) Conservation of mass for a 2-D flow is: 

 

 

1 ( rr V
r r

∂
∂

0

1) ( ) 0

( ) 0  does not depend on 

( )

V
r

V V

V V r

θ

θ θ

θ θ

θ

θ
θ

=

∂
+ =

∂

∂
⇒ = ⇒

∂
⇒ =

   

 
b) θ-mometum equation is: 
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In cylindrical coordinates: 
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Combining all of these results gives: 
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Since the right-hand-side (RHS) is independent of θ , this requires that  

constantp
θ
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=
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for fixed r .  But as θ  varies from π20 → , it must be equal at 

π2&0 , that is )2()0( πθθ === pp .  If not, the solution would be discontinuous.  
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The differential equation for θV  is: 
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A little rearranging gives: 
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Integrating once gives: 
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Integrating again gives: 
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Next, we must apply the no-slip boundary conditions to find θV .  Specifically, 
 
 at ooo rVrr ωθ == ,  
 
 at 111 , rVrr ωθ ==  
 
because flow velocity equals wall velocity in a viscous flow. 
 
So, apply 1& rrrr o == bc’s: 
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Or, rearranged a little gives: 
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c) The radial momentum equation is: 
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But 0&0 =
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Thus, pressure increases with r . 
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d) On the inner cylinder, the moment is a result of the skin friction due to the fluid 
shear stress.  For this flow in which only 0≠θV  and is only a function of r , the 
only non-zero shear stress is θτ r  and has the following form: 
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Rotating Cylinders 
 
   
  
 
 
 
 
 
 
 
 
 
 
 
 
For the problem you studied in the homework: 
 

1. What direction is the fluid element acceleration? 
 
 
 
 
 
 
 

2. What direction are the net pressure forces on a fluid element? 
 
 
 
 
 
 
 

3. What direction are the net viscous forces on a fluid element? 
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