Important Concepts in Thin Airfoil Theory

1. This airfoil theory can be viewed as a panel method with vortex solutions taking the limits of infinite number of panels & zero thickness & zero camber

$$\lim_{\substack{\text{thickness}\to 0\\\text{camber}\to 0}} \underbrace{\left\{\lim_{N\to\infty} \text{vortex panel}\right\}}_{\frac{1}{2\pi}\sum_{i=1}^{N}\gamma_{i}K_{ij}=\bar{V}_{\infty}\cdot\bar{n}_{i}} = \underbrace{\text{thin airfoil theory}}_{\frac{1}{2\pi}\int_{0}^{c}\frac{\gamma(\xi)d\xi}{x-\xi}=V_{\infty}\left(\alpha-\frac{dz}{dx}\right)}$$

- 2. $C_{l} = 2\pi(\alpha \alpha_{LO})$ $\alpha_{LO} = \frac{1}{\pi} \int_{0}^{\pi} \frac{dz}{dx} (1 \cos \theta_{o}) d\theta_{o}$ $x = \frac{c}{2} (1 \cos \theta_{o})$
 - $\alpha_{LC} = 0$ for $\frac{dz}{dx} = 0$ {i.e. symmetric airfoils}
 - thickness does not affect C_i to 1st order
- 3. Moment at $\frac{c}{4}$ is constant with respect to α according to thin airfoil theory

$$\Rightarrow \frac{c}{4} =$$
 aerodynamic center

- $M_{\frac{c}{4}}$ only depends on camber!
- $M_{\frac{c}{4}} = 0$ for symmetric airfoil
- 4. Thin airfoil theory assumes:
 - 2-dimensions
 - Inviscid*
 - Incompressible*
 - Irrotational*
 - Small α
 - Small $\tau_{\rm max}/c$
 - Small $z_{\rm max}/c$

*
$$\Rightarrow$$
D'=0