
Solution 

 
 
• 0=⋅ nu  at control pt #1: 

 
The velocity at control pt #1 is the sum of the freestream + 3 point vortices’ 
velocities at that point: 
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The normal at control pt #1 is: 
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Rearranging: 
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• 0=⋅ nu  at control pt #2: 
 

Now, following the same procedure for control pt #2: 
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• 0=⋅ nu  at control pt #3: 
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Final System of Equations 
 
Combine the numbered equations: 
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The problem with these equations is that they have infinitely many solutions.  
One clue is that the determinant of the matrix is zero.  In particular we can add a 
constant strength to any solution because: 
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⇒ Given a solution 
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 is also a solution where 0Γ  is arbitrary.   

 
So, how do we resolve this? 
Answer: the Kutta condition! 
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What’s the Kutta condition for the windy city problem: 

 
 
Kutta: 3 0Γ = ⇒  no flow around node 3! 
 
So, we can now solve our system of equations starting with 03 =Γ  
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