Aerodynamic Center ${ }^{1}$

Suppose we have the forces and moments specified about some reference location for the aircraft, and we want to restate them about some new origin.

$M_{\text {ref }}=$ Pitching moment about $x_{\text {ref }}$
$M_{\text {new }}=$ Pitching moment about $x_{\text {new }}$
$x_{r e f}=$ Original reference location
$x_{\text {new }}=$ New origin
$N=$ Normal force $\approx L$ for small \propto
$A=$ Axial force $\approx D$ for small \propto
Assuming there is no change in the z location of the two points:
$M_{\text {ref }}=-\left(x_{\text {new }}-x_{\text {ref }}\right) L+M_{\text {new }}$
Or, in coefficient form:
$C_{m_{\text {ref }}}=-\left(\frac{x_{\text {new }}-x_{\text {ref }}}{\substack{\bar{c} \mathbf{c}-a n \\ \text { a.c. }}}\right) C_{L}+C_{M_{\text {new }}}$

The Aerodynamic Center is defined as that location $x_{a c}$ about which the pitching moment doesn't change with angle of attack.

How do we find it?

[^0]Let $x_{\text {new }}=x_{a c}$
Using above:
$C_{M_{r e f}}=-\frac{\left(x_{a c}-x_{r e f}\right)}{\bar{c}} C_{L}+C_{M_{a c}}$
Differential with respect to α :
$\frac{\partial C_{M_{r e f}}}{\partial \alpha}=-\left(\frac{x_{a c}-x_{r e f}}{\bar{c}}\right) \frac{\partial C_{L}}{\partial \alpha}+\left(\frac{\partial C_{M_{a c}}}{\partial \alpha}\right)$
By definition:
$\left(\frac{\partial C_{M_{a c}}}{\partial \alpha}\right)=0$
Solving for the above
$\frac{x_{a c}-x_{r e f}}{\bar{c}}=-\left(\frac{\partial C_{M_{r e f}}}{\partial \alpha}\right) /\left(\frac{\partial C_{L}}{\partial \alpha}\right)$, or
$\frac{x_{a c}-x_{r e f}}{\bar{c}}=\frac{x_{r e f}}{\bar{c}}-\left(\frac{\partial C_{M_{r e f}}}{\partial C_{L}}\right)$

Example:
Consider our AVL calculations for the F-16C

- $x_{\text {ref }}=0$ - Moment given about LE
- Compute $\frac{\partial C_{M_{r e f}}}{\partial C_{L}}$ for small range of angle of attack by numerical differences. I picked $\alpha=-3^{0}$ to $\alpha=3^{0}$.
- This gave $\frac{x_{a c}}{\bar{c}} \approx 2.89$.
- Plotting C_{M} vs α about $\frac{x_{a c}}{\bar{c}}$ shows $\frac{\partial C_{M}}{\partial \alpha} \approx 0$.

Note that according to the AVL predictions, not only is $\frac{\partial C_{M}}{\partial \alpha} \approx 0 @ x_{a c}=2.89$, but also that $C_{M}=0$. The location about which $C_{M}=0$ is called the center of pressure.

Center of pressure is that location where the resultant forces act and about which the aerodynamic moment is zero.

Changing "new" to "cp" and "ref" to "NOSE" to correspond to AVL:
$C_{M_{\text {NOSE }}}=-\left(\frac{x_{c p}-x_{\text {NOSE }}}{\bar{c}}\right) C_{L}+C_{M_{c p}}$
$\Rightarrow \frac{x_{c p}}{\bar{c}}=-\frac{C_{M_{\text {NOSE }}}}{C_{L}}$
So if:
$\frac{C_{M_{\text {NOSE }}}}{C_{L}}=\frac{\partial C_{M_{\text {NOSE }}}}{\partial C_{L}}$,
this will be true. This means that
$C_{M} \approx 0$ at $C_{L}=0$.

[^0]: ${ }^{1}$ Anderson 1.6 \& 4.3

