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Lecture L16 - Central Force Motion: Orbits 

In lecture L12, we derived three basic relationships embodying Kepler’s laws: 

• Equation for the orbit trajectory, 

r = 
h2/µ 

= 
a(1 − e2) 

. (1)
1 + e cos θ 1 + e cos θ 

elliptical orbits 

• Conservation of angular momentum, 

h = r 2θ̇ = |r × v| . (2) 

• Relationship between the major semi-axis and the period of an elliptical orbit, � �22π 
µ = a 3 . (3)

τ 

• Time of Flight (TOF) expressions for elliptical orbits, 

τ 
TOF = tB − tA =

2π 
(MB − MA) (4) 

M = u − e sin u (5) 
e + cos θ 

cos u = . (6)
1 + e cos θ 

In this lecture, we will first derive an additional useful relationship expressing conservation of energy, and 

then examine different types of trajectories. 

Energy Integral 

Since there are no dissipative mechanisms and the only force acting on m can be derived from a gravitational 

potential, the total energy for the orbit will be conserved. Recall that the gravitational potential per unit 

mass is given by −µ/r. That is, F /m = −�(−µ/r) = −(µ/r2)er. Note that the origin (zero potential) 

for the gravitational potential is taken to be at infinity. Therefore, for finite values of r, the potential is 

negative. The kinetic energy per unit mass is v2/2. Therefore, 

1 
v 2 µ 

= E ≡ constant .
2 

− 
r 
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The total specific energy, E, can be related to the parameters defining the trajectory by evaluating the 

total energy at the orbit’s periapsis (θ = 0). From equation 1, rπ = (h2/µ)/(1 + e), and, from equation 2, 

vπ 
2 = h2/rπ 

2 = µ(1 + e)/rπ, since rπ and vπ are orthogonal at the periapsis. Thus, 

E = 
2
1 
vπ 
2 − 

r

µ 

π 
=

2
µ

h

2

2 
(e 2 − 1). (7) 

We see that the value of the eccentricity determines the sign of E. In particular, for 

e < 1 the trajectory is closed (ellipse), and E < 0, 

e = 1 the trajectory is open (parabola), and E = 0, 

e > 1 the trajectory is open (hyperbola), and E > 0. 

Equations 1, 2, and 3, together with the energy integral 7, provide most of relationships necessary to solve 

basic engineering problems in orbital mechanics. 

Types of Orbits 

Elliptic Orbits (e < 1) 

When the trajectory is elliptical, h2 = aµ(1 − e2) (see lecture L12). Then, the total specific energy simplifies 

to E = −µ/(2a), and the conservation of energy can be expressed as 

1 µ µ

2 
v 2 − 

r 
= − 

2a
. (8)


This expression shows that the energy (and the period) of an elliptical orbit depends only on the major 

semi-axis. We also see that for a fixed a, the value of h determines the eccentricity. There are two limiting 

cases: e 1, which gives h 0, which in turn implies that the minor semi-axis of the ellipse b 0; and → → → 

e = 0 which corresponds to a circular orbit with h = 
√

aµ. In the first case, the maximum value of the 

eccentricity is limited by the size of the planet, since, for sufficiently large values of e, the trajectory will 

collapse onto the planet’s surface. 

Below we show three elliptical trajectories that have the same energy (same value of a), but different 

eccentricities. 
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Circular Orbits (e = 0) 

This is a particular case of an elliptic orbit. The energy equation is given by equation 8. The radius is 

constant 
h2 v2r2 

r = = c . 
µ µ 

For orbits around the earth, µ = gR2, where g is the acceleration of gravity at the earth’s surface, and R is 

the radius of the earth. Then, 
µ gR2 

vc 
2 = = , (9) 

r r 

which shows that the velocity of a circular orbit is inversely proportional to the radius. We now consider 

two particular orbits of interest: 

1) r = R 

This corresponds to a hypothetical satellite orbiting the earth at a zero altitude above the earth’s 

surface. The orbit’s velocity is 

vc = gR = 7910 m/s, 

and the period, from equation 3, is 

2π R 
τ = � R3/2 = 2π = 84.4 min . 

gR2 g 

This period is called the “Schuler” period, and it is the minimum period that any free flight object can 

have in orbit around the earth. 

2) Synchronous Orbits 

These are orbits whose period is the same as the earth’s rotational period ( 24 h). In addition, if the 

orbit is in the equatorial plane, the orbit is said to be geostationary because the satellite will stay fixed 

relative to an observer on the earth. Using equation 3, � �1/3 

a = 
τ2gR2 

= 42042 km ≈ 6.6R, 
4π2


which corresponds to an altitude above the surface of 5.6R.


Example Elliptical Orbits 

Consider a satellite launched from an altitude d above the earth’s surface, with velocity vc = µ/(R + d). 

If the direction of the velocity is orthogonal to the position vector, the trajectory will clearly be a circular 

orbit of radius R + d. However, if the velocity is in any other direction, the trajectory will be an ellipse of 

semi-major axis equal to R+d. The characteristics of the ellipse can easily be determined as follows: knowing 

r and v, we can determine h; using equation 7, we can determine e; and from the trajectory equation 1, we 

can determine θ, and hence the orientation of the ellipse. 
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Parabolic Orbits (e = 1) 

From equation 1, we see that r →∞ for θ → π. From the energy integral, with E = 0, we have that, 

1 2 µ 2 2µ 
2 
ve − 

r 
= 0, ve = 

r
. (10) 

Here, ve is the escape velocity — the smallest velocity needed to escape the field of gravitational attraction.


Comparing equations 9 and 10, we see that, for a given r, the escape velocity is a factor of 
√

2 larger than


the velocity necessary to maintain a circular orbit. Thus, if a satellite is on a circular orbit with velocity vc,


the necessary Δv to escape is (
√

2 − 1)vc.


It should be noted that a satellite in a parabolic trajectory has a total specific energy, E, equal to zero. This


means that when r increases, the kinetic energy is transformed to potential energy such that, at infinity, the


residual velocity is equal to zero.


Hyperbolic Trajectory (e > 1) 

For a hyperbolic orbit, e > 1 and the semimajor axis a is negative. The energy is constant and given by 

2 2 

E = − 
2
µ

a 
= 

v

2 
− 

µ

r 
= 

v

2
∞ (11) 

Therefore the magnitude of the velocity inbound is the same as the velocity outbound. 

Hyperbolic orbits are the linkages between orbits about a given planet and interplanetary travel. The 

geometry of a given hyperbolic orbit is shown below (Figure below taken from Kaplan.) This basic orbit is 

used to describe a planetary flyby and/or a hyperbolic escape from a planetary orbit. 

For a given case, the point rp is take as a point on a planetary orbit, and the velocity vp is taken as the 

velocity of a satellite required to escape on a given hyperbolic trajectory from a circular orbit passing through 

the point rp. From this, the trajectory is determined including v∞ and θ∞. 
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This solution can be used to represent a flyby of a spacecraft past a planet. The direction of the orbit 

changes due to the flyby but the velocity v (and energy) does not. However, this solution to the 2-body ∞ 

orbit problem is with respect to coordinates fixed at the center of mass; for a satellite-planet orbit, this is 

a coordinate system moving with the planet. Although the inbound and outbound velocities are the same 

with respect to the moving planet, when this is viewed in an inertial reference frame, considerable 

change in the satellite velocity can occur as a result of a flyby. This effect has been widely used in the design 

of planetary missions. 

From the general orbit equation, valid for all values of �, 

r = 
a(1 − �2) 

(12)
1 + �cosθ 

when θ∞ → ± cos−1(1/e), we have r → ∞. Hence, the trajectories are open. Moreover, if the velocity 

v, at a given r is known (such as near the planet), from conservation of energy the velocity at infinity is 

simply v = 
√

2E = 
� 

2v2 − 2µ/r. For a given energy level, the eccentricity of the orbit is determined by ∞ 
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h = v Δ = µ2(
v
�2−1) . h is a constant of the motion. This yields 2∞
∞ 

v4 Δ2 

�2 = 1 + ∞
µ2 

(13) 

Another useful form is obtained by expressing variables at the point of closest approach, the periapsis. 

2 

� = 1 + 
rpv∞ (14) 

µ 

From conservation of angular momentum, we obtain the displacement Δ of the trajectory from a parallel 

line through the center of the planet. � 

Δ = 
µ (

v

�
2

2 − 1) 
(15) 

∞ 

An important parameter for hyperbolic orbits is the turning angle, δ, which is the angle through which the 

velocity changes along the trajectory as the body travels from −∞ to ∞. The turning angle is given by 

δ = 2(θ∞ − π), or δ = 2 sin−1(1/e). Below we show several hyperbolic trajectories which have identical 

terminal velocities for different values of the eccentricity (and turning angle). 

Example Different orbits as a function of v0 

We consider the problem of launching a satellite at an altitude d with an initial velocity v0, along the 

direction tangent to the earth’s surface. We consider the different trajectories that are obtained as we vary 

the magnitude of v0. 

For v0 = v0c ≡ µ/(R + d), the trajectory will be a circle (e = 0). For v0 = v0e ≡ 2µ/(R + d), 

the trajectory will be parabola (e = 1). For v0 > v0e, the trajectory will be a hyperbola, whereas for 

v0c < v0 < v0e the trajectory will be elliptical. We note that, for all these orbits, the launch point, P , is the 

orbit’s perigee, or the closest point in the trajectory to the earth’s center. 
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On the other hand, when the velocity v0 < v0c, the straightforward use of expressions 1 and 2 gives a negative 

eccentricity! The eccentricity is negative because equation 1 assumes that the origin of θ is taken to be at 

the orbit’s perigee. In turns out that in this case, the orbit has a lower energy than the circular orbit, and, 

hence, the launch point is now the orbit’s apogee. The proper use of equation 1 requires that θ = π. In this 

case, we have d + R = (v0
2(d + R)2/µ)/(1 + e cos π), which for v0 < v0c gives a positive eccentricity. In the 

picture above, we see one such trajectory depicted with a dotted line. 

ADDITIONAL READING 

J.L. Meriam and L.G. Kraige, Engineering Mechanics, DYNAMICS, 5th Edition 

3/13 (energy analysis) 
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