Name:.....

Massachusetts Institute of Technology

16.07 Dynamics

Final Exam

December 15, 2004

	Points
Problem 1	
Problem 2	
Problem 3	
Problem 4	
Problem 5	
Problem 6	
Problem 7	
Problem 8	
Problem 9	
Problem 10	
Problem 11	
Total	

1. (9 points) What is the maximum acceleration which can be given to the cart without tipping over the container with dimensions h and b? Assume that friction is large enough to prevent any slipping.

2. (9 points) A pendulum consists of a massless rigid rod of length 2l and two equal masses. Where should the impulse J be applied so that there is no horizontal reaction at the point from which the pendulum is hanging?

- 3. A small satellite orbiting the Earth has an elliptical orbit with distances from the Earth center to the perigee and apogee being r_{π} and r_{α} , respectively. The radius of the Earth is R and and acceleration of gravity on the surface is g.
 - a) (5 points) What is the minimum Δv needed for the satellite to escape the gravitational influence of the Earth?
 - b) (4 points) What is the radius of curvature of the elliptical orbit at apogee?

4. (9 points) The axis of a uniform disk of diameter d and mass m is connected to two springs with stiffness k as shown in the figure. What is the period of small oscillation of the system? Assume that the disk does not slip.

5. (9 points) A bar of total length l and mass m is released from rest at the position shown. What is the reaction force (magnitude and direction) at the support immediately after the release?

- 6. A solid bar of length l is welded to a shaft rotating with constant angular velocity ω . The mass of the bar is m and the bar is in the plane of the figure at the instant shown.
 - a) (3 points) Find the inertia tensor I of the bar.
 - b) (3 points) Find the angular momentum \vec{H} of the bar.
 - c) (3 points) Find the kinetic energy T of the bar.

Specify the coordinate system you are using.

7. (9 points) A jet engine rotor has mass m and radius of gyration k_G . The center of gravity of the rotor is at distance l from the two supporting bearings. What are the **magnitudes** of the horizontal forces exerted by the two bearings on the rotor if the airplane is flying with velocity v along a horizontal circular trajectory with radius ρ . The dimensions of the airplane are small relative to the radius ρ . 8. (9 points) A cart of mass m = 12 kg is moving with velocity $v_0 = 8$ m/s when it hits the spring damper system shown in the figure. What is the resulting maximum deflection of the spring? The spring constant is k = 48 N/m and the damping coefficient is c = 24 Ns/m. Assume that the plate P has negligible mass so that there is no rebound.

9. (9 points) The lightly damped system shown below is forced by an external force $F = F_0 \sin \omega t$. For two different values of the mass the motion $x = X \sin \omega t$ looks as shown in A) and B). In which case is the mass *m* larger? Why?

10. (9 points) A body with mass m is welded to a shaft rotating at a constant angular velocity ω . The center of mass of the body O lies on the shaft and its inertia tensor in the body fixed Oxyz frame shown in the figure has the form:

$$I = \begin{bmatrix} 3Q & -Q & 0\\ -Q & 3Q & 0\\ 0 & 0 & 2Q \end{bmatrix}$$

At the instant shown determine the **horizontal** reactions at the bearings A and B.

11. (10 points) A two degree of freedom system consists of a solid block with mass $m_1 = 4$ kg and a pendulum with length l = 4.9 m. The mass of the bob is $m_2 = 7$ kg and the spring stiffness is k = 9 N/m. Write down the equations of motion of the system. What are the natural frequencies of the system? As always, the acceleration due to gravity is g = 9.8 m/s².

MIT OpenCourseWare http://ocw.mit.edu

16.07 Dynamics Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.