16.06 Principles of Automatic Control Lecture 18

Bode Plot Construction (continued)

Note that phase of s^{α} term is

$$\angle (j\omega)^{\alpha} = \angle j^{\alpha} = \alpha \angle j$$
$$= \alpha \cdot 90^{\circ}$$

To plot 1 + s/a term, note that

$$|1 + j\omega/a| = (1 + \omega^2/a^2)^{1/2}$$
$$= \begin{cases} 1, & \omega \ll a \\ \omega/a, & \omega \gg a \\ \sqrt{2}, & \omega = a \end{cases}$$

Example:

K(s) = 1 + s/20

What about the phase?

 $\angle 1 + j\omega/a = \tan{^{-1}\omega/a}$

That is, the phase varies by 90° over the frequency range $(\frac{a}{5}, 5a)$. Some people find it easier to draw the construction lines with breakpoints at a/10, 10a.

- Easier to draw
- Less phase error

• Middle segment is not technically an asymptote anyway

For $K = \frac{1}{1+s/a}$, the above magnitude and phase plots are flipped about |K| = 1 or $\angle K = 0^{\circ}$.

Bode Rules:

Rule 1: Manipulate the transfer function into Bode form.

Rule 2: Determine α for $K_0 s^{\alpha}$ term. Plot the low-frequency asymptote with slope α (or 20α dB/dec) through the point $\omega = 1$, $1 \cdot 1 = K_0$.

- **Rule 3:** Complete the composite magnitude asymptotes. At each break point, change the slope by ± 1 , or ± 2 , as appropriate.
- Rule 4: Sketch in approximate magnitude curve. (see FPE for more details).
- **Rule 5:** Plot the low frequency asymptote of the phase curve ($\phi = \alpha \cdot 90^{\circ}$).
- **Rule 6:** The approximate phase is found by changing the phase by $\pm 90^{\circ}$ or $\pm 180^{\circ}$ at each breakpoint.
- **Rule 7:** Locate the asymptotes for each phase curve, at break points 1/5 and 5 times (or 1/10 and 10 times) the frequency of the magnitude break point.
- Rule 8: Graphically add the asymptotes, and draw the approximate phase curve.

Example:

$$KG(s) = \frac{2000(s+0.5)}{s(s+10)(s+50)}$$
$$= \frac{2(1+s/0.5)}{s(1+s/10)(1+s/50)}$$

The magnitude break points are

0	0.5
x	10
x	50

The phase break points are

0	0.05, 5
x	1,100
x	5,500

16.06 Principles of Automatic Control Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.