16.06 Principles of Automatic Control Lecture 12

Root Locus Rules

- Rule 1 The n branches of the locus start at the n poles of $\mathrm{L}(\mathrm{s}) . m$ branches end at the zeros of $\mathrm{L}(\mathrm{s}) . n-m$ branches end at $s=\infty$.
- Rule 2 The locus covers the real axis to the left of an odd number of poles and zeros.

To the left of the pole, $\phi=180^{\circ}$
To the left of a zero, $\Psi=180^{\circ}$.

s to the right of the pole

s to the left of the pole

To the right of a pole, $\phi=0^{\circ}$
To the right of a zero, $\Psi=0^{\circ}$.
So,

$$
\begin{aligned}
\angle L(s) & =\sum_{i=1}^{m} \Psi_{i}-\sum_{i=1}^{n} \phi_{i} \\
& =m_{1} 180^{\circ}-n_{1} 180^{\circ} \\
& =\left(m_{1}+n_{1}\right) 180^{\circ}-n_{1} 360^{\circ} \\
& =180+l 360^{\circ}
\end{aligned}
$$

if $m_{1}+n_{1}$ is off, where
$m_{1}=$ number of zeros to the right of s
$n_{1}=$ number of poles to the right of s

- Rule 3 For large $k, n-m$ of the loci are asymptotic to the lines emanating from the point $s=\infty$, with angles

$$
\theta_{l}=\frac{180^{\circ}+360^{\circ} \cdot(l-1)}{n-m}, \quad l=1, \ldots n-m
$$

where $\alpha=\frac{\sum p_{i}-\sum z_{i}}{n-m}$.
Why? If $s \rightarrow \infty, k \rightarrow \infty$, then to highest order the equation

$$
d(s)+k n(s)=0
$$

becomes

$$
s^{n}+\ldots+k\left(s^{m}+\ldots\right)=0
$$

So the solution satisfies

$$
\begin{aligned}
s^{n} & \sim-k s^{m}, \quad(k, s \rightarrow \infty) \\
& \uparrow \text { "asymptotic to" } \\
\Rightarrow s^{n-m} & \sim-k \\
\Rightarrow s & \sim(-k)^{\frac{1}{n-m}} \\
= & k^{\frac{1}{n-m}} \angle \frac{180^{\circ}+360^{\circ} \cdot(l-1)}{n-m}
\end{aligned}
$$

To get the point $s=\alpha$, do asymptotic analysis with next terms:
Result is that center of pattern is at:

$$
s=\frac{\sum p_{i}-\sum z_{i}}{n-m}
$$

A related rule, not in FPE, is:

- Rule 3a If $n-m \geqslant 2$, the centroid of the closed-loop poles is constant, and is at

$$
\frac{\sum p_{i}}{n}
$$

To show this, consider a polynomial with roots z_{1}, z_{2}, \ldots The polynomial is then

$$
\begin{aligned}
& \left(s-p_{1}\right)\left(s-p_{2}\right) \ldots\left(s-p_{n}\right) \\
= & s^{n}-\left(p_{1}+p_{2}+\ldots p_{n}\right) s^{n-1}+\ldots
\end{aligned}
$$

Therefore, $a_{1}=-\sum p_{i}$.
Now, the closed loop polynomial is given by

$$
\begin{aligned}
& d(s)+k n(s) \\
= & s^{n}+a_{1} s^{n-1}+\ldots+k\left(s^{m}+b_{1} s^{m-1}+\ldots\right) \\
= & s^{n}+a_{1} s^{n-1}+\ldots+\left(a_{n-m}+k\right) s^{m}+\ldots
\end{aligned}
$$

That is, the first term to change in the polynomial is the a_{n-m} term. If $n-m \geqslant 2$, the a_{1} term is unchanged, and the centroid is a constant.
Note that if m poles go to the m zeros z_{i}, the centroid of the remaining $n-m$ poles must go to

$$
\frac{\sum p_{i}-\sum z_{i}}{n-m}
$$

in agreement with rule 3 .

- Rule 4 The angle(s) of departure of a branch of the locus from a pole of multiplicity q is

$$
q \phi_{\mathrm{dep}}=\sum \Psi_{i}-\sum_{*} \phi_{i}-180^{\circ}-360^{\circ}(l-1)
$$

and the angle(s) of arrival of a branch at a zero of multiplicity q is given by

$$
q \Psi_{\mathrm{arr}}=\sum \phi_{i}-\sum_{*} \Psi_{i}+180^{\circ}+360^{\circ}(l-1)
$$

where the sum \sum_{*} excludes to poles (or zeros) at the point of interest.

Example:

$$
L(s)=\frac{s}{(s+1)\left(s^{2}+1\right)}
$$

$\phi_{\text {dep }}=90^{\circ}-45^{\circ}-90^{\circ}-180^{\circ}$
$\phi_{\text {dep }}=-225^{\circ}=135^{\circ}\left(\bmod 360^{\circ}\right)$

MIT OpenCourseWare
http://ocw.mit.edu

16.06 Principles of Automatic Control

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

