16.06 Principles of Automatic Control Lecture 11

The Root Locus Method

Often, it is useful to find how the closed-loop poles of a system change as a single parameter is varied. To do this, we use the root locus method.

Root - root of s polynomial equation
Locus - Set of points (plural - loci)
Consider a typical feedback loop

If both $K(s)$ and $G(s)$ are rational, then the loop gain may be expressed as

$$
K(s) G(s)=k L(s)
$$

where

$$
\begin{aligned}
L(s) & =\frac{n(s)}{d(s)} \\
n(s) & =s^{m}+b_{1} s^{m-1}+\ldots+b_{m} \\
& =\left(s-z_{1}\right)\left(s-z_{2}\right) \ldots\left(s-z_{m}\right) \\
& =\prod_{i=1}^{m}\left(s-z_{i}\right) \\
d(s) & =s^{n}+a_{1} s^{n-1}+\ldots+a_{n} \\
& =\prod_{i=1}^{n}\left(s-p_{i}\right)
\end{aligned}
$$

Then the roots of the closed-loop system occur at:

$$
1+K(s) G(s)=0 \quad(\star)
$$

or

$$
\begin{equation*}
1+k L(s)=0 \tag{*}
\end{equation*}
$$

or

$$
L(s)=-\frac{1}{k}
$$

or

$$
\begin{equation*}
d(s)+k n(s)=0 \tag{*}
\end{equation*}
$$

The root locus is the set of values s for which (\star) holds, and k is any positive real value. (For reasons that will become clear later, this is the definition of the positive or 180 degree locus. Will later define the negative, or 0 degree locus.)

Example:

In this case,

$$
\begin{aligned}
L(s) & =\frac{1}{s(s+1)}, \quad n(s)=1 \\
d(s) & =s(s+1)=s^{2}+s
\end{aligned}
$$

zeros: none
poles: $\quad p_{i}=0,-1$.
The characteristic equation is:

$$
s^{2}+s+k=0
$$

Because characteristic equation is quadratic, we can find the roots using the quadratic formula:

$$
s=-\frac{1}{2} \pm \frac{\sqrt{1-4 k}}{2}
$$

When $0 \leqslant k \leqslant \frac{1}{4}$, the roots are real, and between -1 and 0 . For $k>\frac{1}{4}$, the roots are complex, with real part $-\frac{1}{2}$, and imaginary part that increases (asymptotically) as \sqrt{k}.

Suppose our goal is to choose k so that $\zeta=\sin \theta=0.5 \Rightarrow \theta=30^{\circ}$.
Looking at the geometry in the figure, the imaginary part is

$$
\begin{aligned}
\operatorname{Im}(s) & =\frac{-\operatorname{Re}(s)}{\tan \theta} \\
R(s) & =-\frac{1}{2} \\
\tan \theta & =\frac{\sin 30^{\circ}}{\cos 30^{\circ}}=\frac{1 / 2}{\sqrt{3} / 2}=\frac{1}{\sqrt{3}} \\
\Rightarrow \operatorname{Im}(s) & =\sqrt{3} / 2 \\
\text { But } \operatorname{Im}(s) & =\frac{\sqrt{4 k-1}}{2} \\
\therefore \mathbf{k} & =\mathbf{1}
\end{aligned}
$$

Example:

What is the root locus of

In this problem,

$$
L(s)=\frac{s+3}{(s+8)(s+1)(s+2)}=\frac{n(s)}{d(s)}
$$

The characteristic equation is

$$
(s+8)(s+1)(s+2)+k(s+3)=0
$$

Because the polynomial is cubic, we can't find the roots (easily) in closed form. Nevertheless, can sketch the root loci using root loci sketching rules:

With a little practice, you should be able to sketch root loci very rapidly.

Guidelines for Sketching Root Locus

Will give rules for $k>0$.
For $k>0$ and $1+k L(s)=0$ must have that

$$
L(s)=-\frac{1}{k}=\text { negative real number }
$$

That is, the phase of the $\mathrm{L}(\mathrm{s})$ must be:

$$
\angle L(s)=180^{\circ}+l \cdot 360^{\circ}, \text { where } \mathrm{l} \text { is an integer. }
$$

This is the root locus phase condition, and the reason we call the locus for $k>0$ the 180° locus.
Consider the example above:

The phase of $\mathrm{L}(\mathrm{s})$ is given by

$$
\angle L(s)=\Psi_{1}-\phi_{1}-\phi_{2}-\phi_{3}
$$

To see if a given point is on the locus, could measure all the angles, add/subtract, and test result. This used to be done mechanically with a "spirule". However, it's only important to be able to sketch general shapes; Matlab can do the rest.

Root Locus Rules

Rule 1

The n branches of the locus start at the n points of $\mathrm{L}(\mathrm{s}) . m$ branches end at the zeros of $\mathrm{L}(\mathrm{s}) . n-m$ branches end at $s=\infty$.

Rule 2

The loci cover the real axis to the left of an odd number of poles and zeros.
To the left of the pole, $\phi=180^{\circ}$
To the left of a zero, $\Psi=180^{\circ}$.

MIT OpenCourseWare
http://ocw.mit.edu

16.06 Principles of Automatic Control

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

