
16.06 Principles of Automatic Control
 
Lecture 10
 

PID Control 

A common way to design a control system is to use PID control. 

PID = proportional-integral-derivative 

Will consider each in turn, using an example transfer function 

A 
Gpsq “ 

s2 ` a1s ` a2 

Proportional (P) control 

In proportional control, the control aw is simply a gain, to that u is proportional to e: 

-
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p
G(s) y

r e u

u “ kpe 

For our example, the characteristic equation is 

0 “1 ` kpGpsq

kpA
“1 ` 

s2 ` a1s ` a2 

ñ 0 “s 2 
` a1s ` a2 ` kpA 
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The resulting natural frequency is
 

a 
ωn “ a2 ` kpA 

So in the example, increasing kp increases the natural frequency, but reduces the damping
 
ratio.
 
Plot of pole location vs kp:
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Derivative (D) control 

To add damping to a system, it is often useful to add a derivative term to the control, 

uptq “kpeptq ` kDe9ptq 

or 
vpsq “kpEpsq ` kDsEpsq

“pkp ` kDsqEpsq

“KpsqEpsq 

What is the characteristic equation? 

0 “1 ` KpsqGpsq 

pkp ` kDsqA
“1 ` 

s2 ` a1s ` a2 

0 “s 2 
` pa1 ` kDAqs ` pa2 ` kpq 
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So increasing kD increases the damping ratio without changing the natural frequency, for
 
this example.
 
For kpfixed, kDvarying, plot of closed-loop pole location is:
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NB: For other Gpsq, results may vary.
 
Sometimes, it’s better to place derivative feedback in the feedback path:
 

-
+ k

p

k
D
(s)

yr u
+ G(s)

Why? We get the same pole locations, but no additional zeros to cause additional overshoot. 
Another way to think about this is that we want the derivative effect on y, because that 
adds damping, but we don’t want to differentiate the reference. 

Integral (I) control 

Especially if the plant is a type 0 system, we may want to add integrator to controller to 
drive steady-state error to zero: 

`
kIV psq “ pkp `kDsq Epsq

Ó Ó 
s 

Ó 
P I D 
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Example: 

1 
Gpsq “ 

s2 ` s ` 1 

Suppose we want a system that 

1. Has rise time above tr “ 1s 

2. Has peak overshoot of Mp “ 0.05 

3. Has zero steady-state error to step command 

Let’s do one piece at a time: 

-
+ k

p
G(s)

Characteristic equation is 

0 “ s 2 
` s ` 1 ` kp 

So can only change ωn (and indirectly, ζ) with kp. for tr “ 1, need 

1.8 
1 “ ñ ωn « 1.8 

ωn 

So let’s take kp “ 2 for simplicity. Then 

kpG 3 
T “ “ 

1 ` kpG s2 ` s ` 4 

ñ ζ “0.25, Low 

To get Mp “ 5%, need ζ “ 0.7. So add derivative control. Characteristic Equation is 

0 “ s 2 
` p1 ` kpqs ` 1 ` kp 

The desired polynomial is 

0 “ s 2 
` 2.8s ` 4 

So take kD “ 1.8. 
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If PD control is in forward loop, 

1.8s ` 3 
T “ 

s2 ` 2.8s ` 4 

and the peak overshoot will be 16%, not 5%. So instead, use control structure 

-
+ 3

1.8s

yr u
+ G(s)

(*)

p˚q “ ”mirror loop feedback” 

With this structure, we have: 

tr “1.06s 

Mp “4.6% 

ess “0.25 

So let’s add integral control: 

-
+ k

v
+k
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/s

k
D
s

yr
+ G(s)

Take kI “ 0.25 (trust me!) 
Then 

Response sort of meets specs: 

T “ 
3s ` 0.25 

s3 ` 2.8s2 ` 4s ` 0.25 
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The response has a long tail, due to slow pole – poles are at: 

s “ ´ 1.37 ˘ 1.40j 

s “ ´ 0.065 

Ò slow pole causes long tail 
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