Problem 1:

Please refer to the figure drawn on the board.

A power plant operates on a Brayton Cycle with air as the working fluid. The Brayton cycle consists of a compressor, a combustor, and two turbines (the first drives the compressor and the second provides net power output). The exhaust gases from the second turbine flow into a heat exchanger and are used to heat steam that flows into a third turbine (assume that this turbine also provides net power output). Assume that no other heat inputs occur to the steam.

You may assume that the air behaves as a perfect gas with cp=1 kJ/kgK. Neglect kinetic energies, pressure drops, and heat transfer to the surroundings (except in combustor).

T₁=300 K, P₁= 1bar P₂=8 bar T₃=1300 K T₆=450 K, P₆=1 bar Saturated liquid at state 7 Saturated vapor into steam turbine, P₈=7 MPa X₉=0.75, P₉=5 kPa Adiabatic efficiency, compressor=0.8 Adiabatic efficiency of Brayton turbines=0.85

@P=5 kPa, h_f =137.82 kJ/kg and h_g =2561.5 kJ/kg For steam @P=7 MPa h_f =1267 kJ/kg and h_g =2772.1 kJ/kg For steam

- **a)** Find the ratio of steam mass flow to air mass flow required for steady state operation.
- **b)** Find the net power output per unit mass flow of air.
- c) Find the thermal efficiency of the cycle.

Problem 2:

A turbine and a throttle valve are operating steadily in series as shown on the board. Assume steam is the working fluid, and use the following information:

Turbine inlet pressure=30 bar Turbine pressure ratio=1/3 Throttle exit pressure=1 bar Turbine inlet flow and throttle exit flow are saturated vapor

@P=1 bar, h_f =417.46 kJ/kg and h_g =2675.5 kJ/kg @P=10 bar h_f =762.81 kJ/kg and h_g =2778.1 kJ/kg @P=30 bar h_f =1008.42 kJ/kg and h_g =2804.2 kJ/kg

Neglect heat losses and kinetic energy terms.

- a) What can be said about the phase composition of the working fluid at state 2? If there is a liquid/vapor mixture, find the quality at state 2.
- **b)** What is the specific work output of the turbine?