Problem 1:

A piston/cylinder arrangement contains 1 kg of air. The piston is spring loaded and initially rests on some stops (with the spring uncompressed). A pressure of 300 kPa will just float the piston (i.e, the spring is still uncompressed). At a volume of $1.5 \mathrm{~m}^{3}$ and a pressure of 500 kPa the piston is balanced (i.e, the weight of the piston and the spring force are balanced). The initial state of the air is 100 kPa with a volume of $0.5 \mathrm{~m}^{3}$. Heat is now added until a pressure of 400 kPa is reached. Assume air behaves as a perfect gas.
a) Find the final volume.
b) Find the final temperature.
c) Find the work and heat transfer in the process.
d) Plot the P-V diagram.

Problem 2:

The core of a certain gas turbine system, as drawn on the board, has a compressor, a combustor, and two turbines. The first turbine, the high pressure turbine, provides the power for the compressor through a coupling shaft. The second turbine provides the net power output of the system. You are given the following system specifications:
$\mathrm{T}_{\mathrm{t}, 2}=300 \mathrm{~K}$ (compressor inlet total temperature)
$\mathrm{T}_{\mathrm{t} 4}=1500 \mathrm{~K}$ (high pressure turbine max inlet total temperature)
$\mathrm{T}_{\mathrm{t} 6}=500 \mathrm{~K}$ (low pressure turbine exit total temperature)
$\mathrm{r}_{\mathrm{c}}=20$ (compressor stagnation pressure ratio)
$\dot{m}=100 \mathrm{~kg} / \mathrm{s}$
You may assume that air behaves as a perfect gas with $\mathrm{cp}=1000 \mathrm{~J} / \mathrm{kgK}$ in the compressor and $\mathrm{cp}=1100 \mathrm{~J} / \mathrm{kgK}$ in the turbines. You may also assume that the compressor is adiabatic and reversible.

Find the power output of the low pressure turbine.

