MIT Course 16 Fall 2002

Thermal Energy 16.050

Prof. Z. S. Spakovszky

Notes by E.M. Greitzer Z. S. Spakovszky

Table of Contents

PART 0 - PRELUDE: REVIEW OF "UNIFIED ENGINEERING THERMODYNAMICS"

0.1 What it's all about	0-1
0.2 Definitions and fundamentals ideas of thermodynamics	0-1
0.3 Review of thermodynamics concepts	0-2

PART 1 - THE SECOND LAW OF THERMODYNAMICS

1.A- Background to the Second Law of Thermodynamics	
1.A.1 Some Properties of Engineering Cycles: Work and Efficiency	1A-1
1.A.2 Carnot Cycles	1A-3
1.A.3 Brayton Cycles (or Joule Cycles): The Power Cycle for a Gas Turbine Jet	1A-5
Engine	1 4 0
1.A.4 Gas Turbine Technology and Thermodynamics	1A-8
1.A.5 Refrigerators and heat pumps	1A-11
1.A.6 Reversibility and Irreversibility in Natural Processes	1A-12
1.A.7 Difference between Free Expansion of a Gas and Reversible Isothermal	1A-14
Expansion	
1.A.8 Features of reversible Processes	1A-16
1.B The Second Law of Thermodynamics	
1.B.1 Concept and Statements of the Second Law	1B-1
1.B.2 Axiomatic statements of the Laws of Thermodynamics	1B-3
1.B.3 Combined First and Second Law Expressions	1B-5
1.B.4 Entropy Changes in an Ideal Gas	1B-6
1.B.5 Calculation of Entropy Change in Some Basic Processes	1B-7
<u>1.C Applications of the Second Law</u>	
1.C.1 Limitations on the Work that Can be Supplied by a Heat Engine	1C-1
1.C.2 The thermodynamic Temperature Scale	1C-3
1.C.3 Representation of Thermodynamic Processes in T-s coordinates	1C-4
1.C.4 Brayton Cycle in T-s coordinates	1C-5
1.C.5 Irreversibility, Entropy Changes, and Lost Work	1C-8
1 C 6 Entropy and Unavailable Energy	1C-11
1 C 7 Examples of Lost Work in Engineering Processes	1C-14
1.C.8 Some Overall Comments on Entropy, Reversible and Irreversible Processes	1C-23
	7

1.D Interpretation	of Entropy on th	e Microscopic Scale	e - The Connection	between Randomness and
<u>Entropy</u>	0 17	1		

1.D.1 Entropy Change in Mixing of Two ideal Gases	1D-1
1.D.2 Microscopic and Macroscopic Descriptions of a System	1D-2
1.D.3 A Statistical Definition of Entropy	1D-3
1.D.4 Connection between the Statistical Definition of Entropy and Randomness	1D-5

1.D.5 Numerical Example of the Approach to the Equilibrium Distribution 1.D.6 Summary and Conclusions	1D-6 1D-11
PART 2 - POWER AND PROPULSION CYCLES	
2.A Gas Power and Propulsion Cycles	
2.A.1 The Internal Combustion Engine (Otto Cycle)	2A-1
2.A.2 Diesel Cycle	2A-4
2.A.3 Brayton Cycle	2A-5
2.A.4 Brayton Cycle for Jet Propulsion: the Ideal Ramjet	2A-6
2.A.5 The Breguet Range Equation	2A-8
2.A.6 Performance of the Ideal Ramjet	2A-11
2.A.7 Effect of departures from Ideal Behavior	2A-14
2.B Power Cycles with two-Phase media	
2.B.1Behavior of Two-Phase Systems	2B-1
2.B.2 Work and Heat Transfer with Two-Phase Media	2B-5
2.B.3 The Carnot Cycle as a Two-Phase Power Cycle	2B-8
2.B.4 Rankine Power Cycles	2B-13
2.B.5 Enhancements of, and Effect of Design Parameters on Rankine Cycles	2B-15
2.B.6 Combined Cycles in Stationary Gas Turbine for Power Production	2B-19
2.B.7 Some Overall Comments on Thermodynamic Cycles	2B-21
2.C Introduction to Thermochemistry	
2.C.1 Fuels	2C-1
2.C.2 Fuel-Air Ratio	2C-2
2.C.3 Enthalpy of Formation	2C-2
2.C.4 First Law analysis of Reacting systems	2C-4
2.C.5 Adiabatic Flame Temperature	2C-7

PART 3 - INTRODUCTION TO ENGINEERING HEAT TRANSFER

1.0	Heat Transfer Modes	HT-5
2.0	Conduction Heat Transfer	HT-5
2.1	Steady-State One-Dimensional Conduction	HT-8
2.2	Thermal Resistance Circuits	HT-10
2.3	Steady Quasi-One-Dimensional Heat Flow in Non-Planar Geometry.	HT-14
3.0	Convective Heat Transfer	HT-18
3.1	The Reynolds Analogy	HT-19
3.2	Combined Conduction and Convection	HT-24
3.3	Dimensionless Numbers and Analysis of Results	HT-29
4.0	Temperature Distributions in the Presence of Heat Sources	HT-32
5.0	Heat Transfer From a Fin	HT-35
6.0	Transient Heat Transfer (Convective Cooling or Heating)	HT-40
7.0	Some Considerations in Modeling Complex Physical Processes	HT-42
8.0	Heat Exchangers	HT-43

8.1	Efficiency of a Counterflow Heat Exchanger	HT-50
9.0	Radiation Heat Transfer (Heat transfer by thermal radiation)	HT-52
9.1	Ideal Radiators	HT-53
9.2	Kirchhoff's Law and "Real Bodies"	HT-55
9.3	Radiation Heat Transfer Between Planar Surfaces	HT-55
9.4	Radiation Heat Transfer Between Black Surfaces of Arbitrary Geometry	HT-60

ACKNOWLEDGEMENT

Preparation of these notes has benefited greatly from the expertise of a number of individuals, and we are pleased to acknowledge this help. Jessica Townsend, Vincent Blateau, Isabel Pauwels, and David Milanes, the successive Teaching Assistants in this core department course, provided ideas, corrected errors, inserted "Muddy Points", supplied the index, and in general, created a much more readable document. Any errors that remain, or lack of readability, are thus the sole responsibility of the authors. We also appreciate the work of Diana Park and Robin Palazzolo, who contributed greatly to the editing and graphics. Finally, we are grateful to have had the opportunity to discuss some of the material with Professor Frank Marble of Caltech, whose understanding, insight, and ability to describe thermofluids concepts provide a model of how to address important technical problems.