Chapter 7 Question \#9

Gas is confined to one side of a thermally-insulated container by a thin diaphragm. The diaphragm is broken and the system is allowed to come to thermodynamic equilibrium at state 2.

Which of the following is true?

1) $T_{1}>T_{2}$
2) $T_{1}=T_{2}$
3) $T_{1}<T_{2}$
4) I am not sure

thermally insulated \downarrow

Chapter 7 Question 9 Answer:

(2) $\mathrm{T}_{1}=\mathrm{T}_{2}$

From the First Law, $\Delta \mathrm{u}=\mathrm{q}-\mathrm{w} . \mathrm{q}=0$ since the container is thermally-insulated. $\mathrm{w}=0$ since the container is rigid (or if you draw your system around the gas, because the external pressure $=0$). Therefore, $\Delta u=0$. So for an ideal gas then, the temperature is constant since $d u=c v d T$.

Class Response (2003):

Question 3: Question 3

Class Response (2002):

