Chapter 9, Question 1:
 Angular Momentum

$$
\Sigma \overline{\mathbf{T}}=\frac{\partial \overline{\mathrm{H}}}{\partial \mathbf{t}}+\int_{\mathbf{S}} \rho \overline{\mathbf{r}} \times \overline{\mathbf{u}}(\overline{\mathbf{u}} \cdot \overline{\mathrm{n}}) \mathbf{d s}
$$

What is the x-component of angular momentum flux out of this surface?

1) $\rho \operatorname{Arr}_{x} u_{x}$
2) $\rho A r u_{r} u_{x}$
3) $\rho A r u_{r} u_{r}$
4) $\rho A r u_{r} u_{\theta}$
5) $\rho A r u_{\theta} u_{\theta}$
6) $\rho \operatorname{Aru}_{x} u_{\theta}$
7) I don't know

Chapter 9, Question 1 Answer:

The correct answer is 6) $\rho A r u x u_{\theta}$
u dot n is ux , the x -component of rx u is rue

Class performance (2003):

Question 2: Question 2

Class performance (2001):

52 students logged in.

