COMPENDIUM OF EQUATIONS Unified Engineering Thermodynamics

Note: It is with some reservation that I supply this compendium of equations. One of the common pitfalls for engineering students is that they solve problems through pattern matching rather than through applying the correct equation based upon a foundation of conceptual understanding. This type of training does not serve the students well when they are asked to perform higher-level cognitive tasks such as analysis, synthesis, and evaluation. Thus, while you are welcome to use this list as a guide and a study aid, I expect you to be able to derive each of these equations from their most general forms (e.g. work, the First Law, etc.). Do not settle for a shallow understanding of this material.

I. Equation of State:

$$
\mathrm{pv}=\mathrm{RT} \text { or } \mathrm{p}=\rho \mathrm{RT} \text { for a thermally perfect gas }
$$

II. Expressions for Work:

A. Work for a simple compressible substance

$$
W=\int_{V_{1}}^{V_{2}} p_{e x t} d V
$$

B. Work for a simple compressible substance undergoing a quasi-static process

$$
W=\int_{V_{1}}^{V_{2}} p d V
$$

C. Work for an isothermal, quasi-static process of a simple compressible substance

$$
\mathrm{W}=\mathrm{mRT} \cdot \ln \left(\frac{\mathrm{v}_{2}}{\mathrm{v}_{1}}\right) \quad=\mathrm{mRT} \cdot \ln \left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}\right)
$$

D. Work for an isobaric quasi-static process of a simple compressible substance

$$
\mathrm{W}=\mathrm{p}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)
$$

E. Work for a quasi-static adiabatic process

$$
W=-\left(U_{2}-U_{1}\right)
$$

F. Work for quasi-static adiabatic process of an ideal gas

$$
\mathrm{W}=-\mathrm{mc}_{\mathrm{v}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)
$$

III. Forms of the First Law of Thermodynamics

A. Most general forms

$$
\Delta \mathrm{E}=\mathrm{Q}-\mathrm{W}, \quad \Delta \mathrm{e}=\mathrm{q}-\mathrm{w}, \quad \mathrm{dE}=\delta \mathrm{Q}-\delta \mathrm{W}, \quad \text { and } \quad \mathrm{de}=\delta \mathrm{q}-\delta \mathrm{w}
$$

B. Neglecting changes in kinetic and potential energy

$$
\Delta \mathrm{U}=\mathrm{Q}-\mathrm{W} \quad \Delta \mathrm{u}=\mathrm{q}-\mathrm{w}, \quad \mathrm{dU}=\delta \mathrm{Q}-\delta \mathrm{W}, \quad \text { and } \quad \mathrm{du}=\delta \mathrm{q}-\delta \mathrm{w}
$$

C. Neglecting changes in kinetic and potential energy, in terms of enthalpy
$\mathrm{H}=\mathrm{U}+\mathrm{pV}$ therefore $\mathrm{dH}=\mathrm{dU}+\mathrm{pdV}+\mathrm{Vdp}$
so

$$
\mathrm{dH}=\delta \mathrm{Q}-\delta \mathrm{W}+\mathrm{pdV}+\mathrm{Vdp}
$$

or $\quad \mathrm{dh}=\delta \mathrm{q}-\delta \mathrm{w}+\mathrm{pdv}+\mathrm{vdp}$
D. For quasi-static processes where changes in kinetic and potential energy are not important.

$$
\begin{array}{ll}
\mathrm{dU}=\delta \mathrm{Q}-\mathrm{pdV} & \text { or } \mathrm{du}=\delta \mathrm{q}-\mathrm{pdv} \\
\mathrm{dH}=\delta \mathrm{Q}+\mathrm{Vdp} & \text { or } \mathrm{dh}=\delta \mathrm{q}+\mathrm{vdp}
\end{array}
$$

E. For quasi-static processes of an ideal gas where changes in kinetic and potential energy are not important.

$$
\begin{array}{lll}
\mathrm{mc}_{\mathrm{v}} \mathrm{dT}=\delta \mathrm{Q}-\mathrm{pdV} & \text { or } & \mathrm{c}_{\mathrm{v}} \mathrm{dT}=\delta \mathrm{q}-\mathrm{pdv} \\
\mathrm{mc}_{\mathrm{p}} \mathrm{dT}=\delta \mathrm{Q}+\mathrm{Vdp} & \text { or } & \mathrm{c}_{\mathrm{p}} \mathrm{dT}=\delta \mathrm{q}+\mathrm{vdp}
\end{array}
$$

IV. The First Law of Thermodynamics as a Rate Equation

A. Most general form

$$
\begin{aligned}
& \frac{\mathrm{dE}_{\text {c.v. }}}{\mathrm{dt}}=\dot{\mathrm{Q}}_{\text {c.v. }}-\dot{\mathrm{W}}_{\text {c.v. }}+\dot{\mathrm{m}}_{\text {in }} \mathrm{e}_{\text {in }}-\dot{\mathrm{m}}_{\text {out }} \mathrm{e}_{\text {out }} \\
& \binom{\text { rate of change }}{\text { of energyin c.v. }}=\binom{\text { rate of heat }}{\text { added to c.v. }}-\binom{\text { rateof work }}{\text { done }}+\binom{\text { rate of energy }}{\text { flowin to c.v. }}-\binom{\text { rate of energy }}{\text { flow outof c.v. }}
\end{aligned}
$$

B. For a steady flow process

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{dt}}=0 \quad \text { and } \quad \dot{\mathrm{m}}_{\mathrm{in}}=\dot{\mathrm{m}}_{\mathrm{out}}=\dot{\mathrm{m}} \\
& \dot{\mathrm{Q}}_{\mathrm{c} . \mathrm{v} .}-\dot{\mathrm{W}}_{\mathrm{c} . \mathrm{v} .}=\dot{\mathrm{m}}\left(\mathrm{e}_{\mathrm{out}}-\mathrm{e}_{\mathrm{in}}\right)
\end{aligned}
$$

or

$$
\dot{\mathrm{Q}}_{\mathrm{c} . \mathrm{v} .}-\dot{\mathrm{W}}_{\mathrm{c} . \mathrm{v} .}=\dot{\mathrm{m}}\left[(\mathrm{IE}+\mathrm{KE}+\mathrm{PE})_{\mathrm{out}}-(\mathrm{IE}+\mathrm{KE}+\mathrm{PE})_{\mathrm{in}}\right]
$$

C. For a steady flow process neglecting changes in potential energy

$$
\dot{\mathrm{Q}}_{\text {c.v. }}-\dot{\mathrm{W}}_{\mathrm{c} . \mathrm{v} .}=\dot{\mathrm{m}}\left[\left(\mathrm{u}+\frac{\mathrm{c}^{2}}{2}\right)_{\mathrm{out}}-\left(\mathrm{u}+\frac{\mathrm{c}^{2}}{2}\right)_{\mathrm{in}}\right]
$$

or

$$
\mathrm{q}_{1-2}-\mathrm{w}_{1-2}=\mathrm{u}_{2}-\mathrm{u}_{1}+\frac{\mathrm{c}_{2}^{2}}{2}-\frac{\mathrm{c}_{1}^{2}}{2}
$$

written in terms of external or shaft work

$$
\mathrm{q}_{1-2}-\mathrm{w}_{\mathrm{s} 1-2}=\left(\mathrm{u}_{2}+\mathrm{p}_{2} \mathrm{v}_{2}\right)-\left(\mathrm{u}_{1}+\mathrm{p}_{1} \mathrm{v}_{1}\right)+\mathrm{c}_{2}^{2}-\frac{\mathrm{c}_{1}^{2}}{2}
$$

or in terms of shaft work and enthalpy

$$
\mathrm{q}_{1-2}-\mathrm{w}_{\mathrm{sl}-2}=\mathrm{h}_{2}-\mathrm{h}_{1}+\frac{\mathrm{c}_{2}^{2}}{2}-\frac{\mathrm{c}_{1}^{2}}{2}
$$

D. Steady flow energy equation for an ideal gas

$$
\mathrm{q}_{1-2}-\mathrm{w}_{\mathrm{s} 1-2}=\left(\mathrm{c}_{\mathrm{p}} \mathrm{~T}_{2}+\mathrm{c}_{2}^{2}\right)-\left(\mathrm{c}_{\mathrm{p}} \mathrm{~T}_{1}+\mathrm{c}_{1}^{2}\right)
$$

E. Steady flow energy equation for an ideal gas for an adiabatic process with no shaft work

$$
\mathrm{c}_{\mathrm{p}} \mathrm{~T}_{2}+\frac{\mathrm{c}_{2}^{2}}{2}=\mathrm{c}_{\mathrm{p}} \mathrm{~T}_{1}+\frac{\mathrm{c}_{1}^{2}}{2}
$$

The quantity that is conserved is called the stagnation temperature.

$$
\mathrm{T}_{\mathrm{T}}=\mathrm{T}+\frac{\mathrm{c}^{2}}{2 \mathrm{c}_{\mathrm{p}}} \quad\left(\text { or } \quad \frac{\mathrm{T}_{\mathrm{T}}}{\mathrm{~T}}=1+\frac{\gamma-1}{2} \mathrm{M}^{2} \quad \text { using } \mathrm{a}=\sqrt{\gamma \mathrm{RT}}\right)
$$

It is also convenient to define the stagnation enthalpy, h_{T}

$$
\mathrm{h}_{\mathrm{T}}=\mathrm{c}_{\mathrm{p}} \mathrm{~T}+\frac{\mathrm{c}^{2}}{2}
$$

so we can rewrite the Steady Flow Energy Equation in a convenient form as

$$
\mathrm{q}_{1-2}-\mathrm{w}_{\mathrm{s} 1-2}=\mathrm{h}_{\mathrm{T} 2}-\mathrm{h}_{\mathrm{T} 1}
$$

F. Steady flow energy equation for an ideal gas for a quasi-static adiabatic process with no shaft work

$$
\frac{p_{\mathrm{T}}}{\mathrm{p}}=\left(1+\frac{\gamma-1}{2} \mathrm{M}^{2}\right)^{\gamma / \gamma-1}
$$

V. Other relationships

A. Relationship between properties for quasi-static, adiabatic processes for thermally perfect gases

$$
\begin{aligned}
& \mathrm{pv}^{\gamma}=\text { constant } \\
& \frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}=\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)^{\gamma / \gamma-1} \quad \text { and } \quad \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\left(\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}\right)^{\gamma-1} \quad \text { and } \quad \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\left(\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}\right)^{\gamma}
\end{aligned}
$$

B. Thermal efficiency of a cycle

$$
\eta=\frac{\text { net work }}{\text { heat input }}=\frac{\Delta w}{q_{\text {comb. }}}
$$

C. Entropy

$$
\mathrm{ds}=\mathrm{c}_{\mathrm{v}} \frac{\mathrm{dT}}{\mathrm{~T}}+\mathrm{R} \frac{\mathrm{dv}}{\mathrm{v}}
$$

For the case of a thermally perfect gas then

$$
\mathrm{s}-\mathrm{s}_{0}=\int_{\mathrm{T}_{0}}^{\mathrm{T}} \mathrm{c}_{\mathrm{v}} \frac{\mathrm{dT}}{\mathrm{~T}}+\mathrm{R} \ln \left(\frac{\mathrm{v}}{\mathrm{v}_{0}}\right)
$$

or in situations with $\mathrm{c}_{\underline{v}}=$ constant

$$
s-s_{0}=c_{v} \ln \left(\frac{T}{T_{0}}\right)+R \ln \left(\frac{\mathrm{v}}{\mathrm{v}_{0}}\right)
$$

So for the case of a thermally perfect gas then

$$
\mathrm{s}-\mathrm{s}_{0}=\int_{\mathrm{T}_{0}}^{\mathrm{T}} \mathrm{c}_{\mathrm{p}} \frac{\mathrm{dT}}{\mathrm{~T}}-\mathrm{R} \ln \left(\frac{\mathrm{p}}{\mathrm{p}_{0}}\right)
$$

or in situations with $\mathrm{c}_{\mathrm{e}}=$ constant

$$
\mathrm{s}-\mathrm{s}_{0}=\mathrm{c}_{\mathrm{p}} \ln \left(\frac{\mathrm{~T}}{\mathrm{~T}_{0}}\right)-\mathrm{R} \ln \left(\frac{\mathrm{p}}{\mathrm{p}_{0}}\right)
$$

VI. Nomenclature

a	speed of sound (m / s)
c	velocity (m/s)
c_{p}	specific heat at constant pressure ($\mathrm{J} / \mathrm{kg}-\mathrm{K}$)
c_{v}	specific heat at constant volume ($\mathrm{J} / \mathrm{kg}-\mathrm{K}$)
e	energy (J/kg)
E	energy (J)
h	enthalpy (J/kg)
$\mathrm{h}_{\text {T }}$	total or stagnation enthalpy (J / kg)
H	enthalpy (J)
m	mass (kg)
p	pressure (kPa)
p_{T}	total or stagnation pressure (kPa)
q	heat (J/kg)
Q	heat (J)
R	gas constant (J/kg-K)
s	entropy (J / K)
S	entropy ($\mathrm{J} / \mathrm{kg}-\mathrm{K}$)
t	time (s)
T	temperature (K)
T_{T}	total or stagnation temperature (K)
u	internal energy (J / kg)
U	internal energy (J)
v	specific volume ($\mathrm{m}^{3} / \mathrm{kg}$)
V	volume (m^{3})
w	work (J / kg)
$\mathrm{W}_{\text {s }}$	shaft or external work (J / kg)
W	work (J)
γ	ratio of specific heats, $\mathrm{c}_{\mathrm{p}} / \mathrm{c}_{\mathrm{v}}$
η	thermal efficiency
ρ	density ($\mathrm{kg} / \mathrm{m}^{3}$)

