COMPENDIUM OF EQUATIONS Unified Engineering Thermodynamics

<u>Note:</u> It is with some reservation that I supply this compendium of equations. One of the common pitfalls for engineering students is that they solve problems through pattern matching rather than through applying the correct equation based upon a foundation of conceptual understanding. This type of training does not serve the students well when they are asked to perform higher-level cognitive tasks such as analysis, synthesis, and evaluation. Thus, while you are welcome to use this list as a guide and a study aid, I expect you to be able to derive each of these equations from their most general forms (e.g. work, the First Law, etc.). Do not settle for a shallow understanding of this material.

I. Equation of State:

pv = RT or p = RT for a thermally perfect gas

II. Expressions for Work:

A. Work for a simple compressible substance

$$W = p_{ext} dV$$

B. Work for a simple compressible substance undergoing a quasi-static process

$$W = \int_{V_{i}}^{2} p dV$$

C. Work for an isothermal, quasi-static process of a simple compressible substance

W = mRT ln
$$\frac{v_2}{v_1}$$
 = mRT ln $\frac{p_1}{p_2}$

D. Work for an isobaric quasi-static process of a simple compressible substance

 $\mathbf{W} = \mathbf{p}(\mathbf{V}_2 - \mathbf{V}_1)$

E. Work for a quasi-static adiabatic process

$$W = -(U_2 - U_1)$$

F. Work for quasi-static adiabatic process of an ideal gas

$$W = -mc_v(T_2 - T_1)$$

III. Forms of the First Law of Thermodynamics

A. Most general forms

E = Q - W, e = q - w, dE = Q - W, and de = q - w

B. Neglecting changes in kinetic and potential energy

$$U=Q-W \qquad u=q-w, \quad dU= \quad Q-W, \quad and \quad du= \quad q-w$$

C. Neglecting changes in kinetic and potential energy, in terms of enthalpy

$$H = U + pV \text{ therefore } dH = dU + pdV + Vdp$$

so
$$dH = Q - W + pdV + Vdp$$

or
$$dh = q - w + pdv + vdp$$

D. For quasi-static processes where changes in kinetic and potential energy are not important.

$$dU = Q - pdV$$
 or $du = q - pdv$
 $dH = Q + Vdp$ or $dh = q + vdp$

E. For quasi-static processes of an ideal gas where changes in kinetic and potential energy are not important.

$$mc_{v}dT = Q - pdV \quad or \quad c_{v}dT = q - pdv$$
$$mc_{p}dT = Q + Vdp \quad or \quad c_{p}dT = q + vdp$$

IV. The First Law of Thermodynamics as a Rate Equation

A. Most general form

$$\frac{dE_{c.v.}}{dt} = \dot{Q}_{c.v.} - \dot{W}_{c.v.} + \dot{m}_{in}e_{in} - \dot{m}_{out}e_{out}$$

rate of change of energy in c.v. = rate of heat - rate of work + rate of energy flow in to c.v. - rate of energy flow out of c.v.

B. For a steady flow process

$$\begin{split} & \frac{d}{dt} = 0 \quad \text{and} \quad \dot{m}_{in} = \dot{m}_{out} = \dot{m} \\ & \dot{Q}_{c.v.} - \dot{W}_{c.v.} = \dot{m}(e_{out} - e_{in}) \\ & \text{or} \\ & \dot{Q}_{c.v.} - \dot{W}_{c.v.} = \dot{m} [(IE + KE + PE)_{out} - (IE + KE + PE)_{in}] \end{split}$$

C. For a steady flow process neglecting changes in potential energy

$$\dot{Q}_{c.v.} - \dot{W}_{c.v.} = \dot{m} \quad u + \frac{c^2}{2} \quad - \quad u + \frac{c^2}{2}$$
 in

or

$$q_{1-2} - w_{1-2} = u_2 - u_1 + \frac{c_2^2}{2} - \frac{c_1^2}{2}$$

written in terms of external or shaft work

$$q_{1-2} - w_{s_{1-2}} = (u_2 + p_2 v_2) - (u_1 + p_1 v_1) + \frac{c_2^2}{2} - \frac{c_1^2}{2}$$

or in terms of shaft work and enthalpy

$$q_{1-2} - w_{s_{1-2}} = h_2 - h_1 + \frac{c_2^2}{2} - \frac{c_1^2}{2}$$

D. Steady flow energy equation for an ideal gas

$$q_{1-2} - w_{s_{1-2}} = c_p T_2 + \frac{c_2^2}{2} - c_p T_1 + \frac{c_1^2}{2}$$

E. Steady flow energy equation for an ideal gas for an adiabatic process with no shaft work

$$c_{p}T_{2} + \frac{c_{2}^{2}}{2} = c_{p}T_{1} + \frac{c_{1}^{2}}{2}$$

The quantity that is conserved is called the stagnation temperature.

$$T_{T} = T + \frac{c^{2}}{2c_{p}}$$
 or $\frac{T_{T}}{T} = 1 + \frac{-1}{2}M^{2}$ using $a = \sqrt{RT}$

It is also convenient to define the **stagnation enthalpy**, h_T

$$h_{\rm T} = c_{\rm p} T + \frac{c^2}{2}$$

so we can rewrite the **Steady Flow Energy Equation** in a convenient form as

$$q_{1-2} - w_{s_{1-2}} = h_{T2} - h_{T1}$$

F. Steady flow energy equation for an ideal gas for a quasi-static adiabatic process with no shaft work

$$\frac{p_{\rm T}}{p} = 1 + \frac{-1}{2} {\rm M}^2$$

V. Other relationships

A. Relationship between properties for quasi-static, adiabatic processes for thermally perfect gases

$$pv = constant$$

$$\frac{p_2}{p_1} = \frac{T_2}{T_1} \int_{-1}^{-1} and \qquad \frac{T_2}{T_1} = \frac{v_1}{v_2} \int_{-1}^{-1} and \qquad \frac{P_2}{P_1} = \frac{v_1}{v_2}$$

B. Thermal efficiency of a cycle

$$= \frac{\text{net work}}{\text{heat input}} = \frac{\text{w}}{\text{q}_{\text{comb.}}}$$

C. Entropy

$$ds = c_v \frac{dT}{T} + R \frac{dv}{v}$$

For the case of a thermally perfect gas then

$$s - s_0 = \frac{T}{T_0} c_v \frac{dT}{T} + R \ln \frac{v}{v_0}$$

or in situations with $\underline{c_v} = \text{constant}$

$$s - s_0 = c_v \ln \frac{T}{T_0} + R \ln \frac{v}{v_0}$$

So for the case of a <u>thermally perfect gas</u> then

$$s - s_0 = {T \over T_0} c_p {dT \over T} - R ln {p \over P_0}$$

or in situations with $\underline{c_p} = \text{constant}$

$$s - s_0 = c_p \ln \frac{T}{T_0} - R \ln \frac{p}{p_0}$$

VI. Nomenclature

а	speed of sound (m/s)
с	velocity (m/s)
C _n	specific heat at constant pressure (J/kg-K)
	specific heat at constant volume (J/kg-K)
e	energy (J/kg)
E	energy (J)
h	enthalpy (J/kg)
h_{T}	total or stagnation enthalpy (J/kg)
Н	enthalpy (J)
m	mass (kg)
р	pressure (kPa)
p_{T}	total or stagnation pressure (kPa)
q	heat (J/kg)
Q	heat (J)
R	gas constant (J/kg-K)
S	entropy (J/K)
S	entropy (J/kg-K)
t	time (s)
Т	temperature (K)
T _T	total or stagnation temperature (K)
u	internal energy (J/kg)
U	internal energy (J)
V	specific volume (m ³ /kg)
V	volume (m ³)
W	work (J/kg)
W _s	shaft or external work (J/kg)
W	work (J)
	ratio of specific heats, c_p/c_v
	thermal efficiency
	density (kg/m^3)