
UNIFIED ENGINEERING  Fall 2003 
Lecture Outlines  Ian A. Waitz 

UNIFIED LECTURE #2: 

THE BREGUET RANGE EQUATION 


I. Learning Goals 

At the end of this lecture you will: 

A. Be able to answer the question “How far can an airplane fly, and why?”; 

B. Be able to answer the question “How do the disciplines of structures & 
materials, aerodynamics and propulsion jointly set the performance of 
aircraft, and what are the important performance parameters?”; 

C. Be able to use empirical evidence to estimate the performance of aircraft and 
thus begin to develop intuition regarding important aerodynamic, structural 
and propulsion system performance parameters; 

D. Have had your first exposure to active learning in Unified Engineering 
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II. Question: How far can an airplane (or a duck, for that matter) 
fly? 

OR: 

What is the farthest that an airplane can 
fly on earth, and why? 

We will begin by developing a mathematical model of the physical system. Like most 
models, this one will have many approximations and assumptions that underlie it. It is 
important for you to understand these approximations and assumptions so that you 
understand the limits of applicability of the model and the estimates derived from it. 
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Figure 1.1 Force balance for an aircraft in steady level flight. 
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For steady, level flight, 

T = D, L = W or 
L

W L= = D 
D 

= T 
 

L 
D 

The weight of the aircraft changes in response to the fuel that is burned (rate at which 
weight changes equals negative fuel mass flow rate times gravitational constant) 

dW = −m g˙ ⋅ 
dt f 

Now we will define an overall propulsion system efficiency: 

what you get = propulsive power
overall efficiency = 

what you pay for fuel power 

⋅propulsive power = thrust flight velocity = Tuo  (J/s)


fuel power = fuel mass flow rate fuel energy per unit mass = m h (J/s)
⋅ ˙ f 

Thus 

Tuo= overall m h˙ f 
η 

We can now write the expression for the change in weight of the vehicle in terms of 
important aerodynamic (L/D) and propulsion system (ηoverall) parameters: 

dW = −m g˙ ⋅ = −W −Wu0 = −Wu0= 
dt f  L  T h  L  Tu0 h  L  η 

˙ f ⋅ ˙ f ⋅ g  D overall D m g g  D m h  

We can rewrite and integrate 

0dW  = −u dt  ⇒ ln W = constant − tu0 

W h L   η h  L  η 
g  D overall g  D overall 

applying the initial conditions, at t = 0 W = Winitial ∴  const. = ln Winitial 

−L h W 
t∴ = ηoverall ln 

D gu0 Winitial 
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the time the aircraft has flown corresponds to the amount of fuel burned, therefore 

−L h Wfinalln 
D overall gu0 Winitial 

ηtfinal =


then multiplying by the flight velocity we arrive at the Breguet Range Equation which 
applies for situations where overall efficiency, L/D, and flight velocity are constant over 
the flight. 

Range 
h L ηoverall ln 

Winitial 

g D Wfinal 
= 

Fluids Propulsion Structures + 
(Aero) Materials 

Note that this expression is sometimes rewritten in terms of an alternate measure of 
efficiency, the specific fuel consumption or SFC. SFC is defined as the mass flow rate of 
fuel per unit of thrust (lbm/s/lbf or kg/s/N). In the following expression, V is the flight 
velocity and g is the acceleration of gravity. 

V L  D( ) 
⋅ 

ln 
g SFC 

 Winitial 
 




Range = 
Wfinal 
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Thus we see that the answer to the question “How far can an airplane fly?” depends 
on: 

1. 	 How much energy is contained in the fuel it carries; 

2. 	 How aerodynamically efficient it is (the ratio of the production of lift to the 
production of drag). During the fluids lectures you will learn how to develop 
and use models to estimate lift and drag. 

3. 	 How efficiently energy from the fuel/oxidizer is turned into useful work 
(thrust times distance traveled) which is used to oppose the drag force. 
Thermodynamics helps us describe and estimate the efficiency of various 
energy conversion processes, and propulsion lets us describe how to use this 
energy to propel a vehicle; 

4. 	 How light weight the structure is relative to the amount of fuel and payload it 
can carry. The materials and structures lectures you will teach you how to 
estimate the performance of aerospace structures. 
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Below are some data to allow you to make estimates for various aircraft and birds. 

Figure 1.2 Heating values for various fuels (from The Simple Science of Flight, by H. 
Tennekes) 
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The Great Gliding Diagram.  Airspeed, V, is plotted on the horizontal axis.  Rate of descent, w, is 
plotted downward along the vertical axis. The diagonals are lines of constant finesse. The 
horizontal line represents the practical soaring limit, 1 meter / second. 

Figure 1.3 Gliding performance as a function of L/D (where L/D=F, from The Simple 
Science of Flight, by H. Tennekes) 
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Figure 1.4 Aerodynamic data for commercial aircraft: L/D for cruise (Babikian, R., The 

Historical Fuel Efficiency Characteristics of Regional Aircraft From Technological, 
Operational, and Cost Perspectives, SM Thesis, MIT, June 2001) 

Figure 1.5 Weight and geometry for aircraft and birds (where L/D=F, from The Simple 
Science of Flight, by H. Tennekes) 
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Figure 1.5 Weight fractions for transport aircraft in terms of empty weight over max 
take-off weight (Mattingly, Heiser & Daley, Aircraft Engine Design, 1987) 
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Figure 1.6 Structural efficiency data for commercial aircraft: Operating empty weight 
over maximum take-off weight (Babikian, R., The Historical Fuel Efficiency 

Characteristics of Regional Aircraft From Technological, Operational, and Cost 
Perspectives, SM Thesis, MIT, June 2001) 
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Figure 1.7 Aircraft performance (from The Simple Science of Flight, by H. Tennekes) 

For aircraft engines it is often convenient to break the overall efficiency into two parts: 
thermal efficiency and propulsive efficiency where the subscripts e and o refer to exit and 
inlet: 

2 ˙ 2 m u˙ e e  − m  uo  
rate of production of propellant k.e. = 

 2 
o

2 
=η thermal fuel power m h ˙ f 

η = propulsive power = Tuo 

prop 
 2 ˙ 2rate of production of propellant k.e.  m u o 

 
˙ e e  − m  uo  

2 2 

such that 

η overall = η thermal ⋅ η  prop 

During the first semester thermodynamics lectures we will focus largely on thermal 
efficiency. In next semester’s propulsion lectures we will combine thermodynamics with 
fluid mechanics to obtain estimates for propulsive and thus overall efficiency. The data 
shown in Figure 1.6 will give you a rough idea for the conversion efficiencies of various 
modern aircraft engines. 
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Figure 1.8 Trends in aircraft engine efficiency (after Pratt & Whitney) 
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Figure 1.9 Engine efficiency for commercial aircraft: specific fuel consumption 
(Babikian, R., The Historical Fuel Efficiency Characteristics of Regional Aircraft From 

Technological, Operational, and Cost Perspectives, SM Thesis, MIT, June 2001) 

10 



The accuracy of the range equation in predicting performance for commercial transport 
aircraft is quite good. The Department of Transportation collects and reports a variety of 
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operational and financial data for the U.S. fleet in something called DOT Form 41. 
Operational data for fuel burned and payload (passengers and cargo) carried was 
extracted from Form 41 and combined with the technological data shown in Figures 1.4, 
1.6 and 1.9 to estimate range. In Figure 1.10 these estimates are compared to the actual 
stage length flown (range) as reported in Form 41. The difference between the actual 
stage length flown and the estimated stage length is shown in Figure 1.11. Figure 1.11 
shows that the percent deviation between the Breguet range equation estimates and the 
actual stage lengths flown is a function of the stage length. For long-haul flights, the 
assumptions of constant velocity, L/D, and SFC are good. However, for short-haul 
flights, taxiing, climbing, descending, etc. are a relatively large fraction of the overall 
flight time, so the steady-state cruise assumptions of the range equation are less valid. 

(16 short- and long-haul aircraft) 
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Figure 1.10 Performance of Breguet range equation for estimating commercial aircraft 
operations (J. J. Lee, MIT Masters Thesis, 2000) 
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Figure 1.11 Deviation (%) of Breguet range equation estimates from actual stage length 
flown is a function of the stage length (J. J. Lee, MIT Masters Thesis, 2000) 

III. Questions: 

A. How far can a duck fly? 

B. Why don’t we fly on hydrogen-powered airplanes? 

Fuel properties are listed below. 

Fuel Density (kg/m3) Heating Value (kJ/kg) 

Jet-A 800.0 45000

H2 (gaseous, S.T.P.) 0.0824 120900

H2 (liquid, 1 atm) 70.8 120900


C. Why is the maximum range for an aircraft on earth approximately 
25,000mi? (Voyager: 3181kg of fuel is 72% of maximum take-off 
weight, flight speed 186.1km/hr = 9 days to circle the earth) 

D. What are the assumptions and approximations that underlie the 

Breguet Range Equation? 
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