

SP1: System Requirements and Teamwork

Unified Engineering Spring 2004 Thu 5-Feb-04 Charles P Coleman, MIT

CP Coleman

<u>Outline</u>

- Whole semester in four slides!
- Why?
- UAC 2004 & SP1

Whole semester in four slides!

Systems

- People,
 - Product, Process

U.S. Airways

McDonald's

 Deliver functionality

Global Positioning System

AWACS

Groups of people:

- conceive
- design
- -implement and
- -operate

systems

Getting groups

- of people to:
 - conceive
 - design
 - implement and
 - operate

systems is...not easy

Keys for Success

<u>Design</u>

- Process
- Analysis

Project Mgmt

- Time
- Resources
- Risk

<u>Teamwork</u>

- Communication
- Coordination
- Roles & Responsibilities
- Motivation!

<u>Tools:</u>

FRDIARRC

<u>Tools:</u>

- WBS
- Gantt Chart

<u>Tools:</u>

- Comm Plan
- Roles & Resp
- Ground Rules
- Effective Mtgs

Why?

Reform of Engineering Education

- Emphasis on teaching of engineering science.
- **De-emphasis** on teaching engineering practice.
- Students lacking abilities required in real world engineering situations.

Widening Gap between engineering education and engineering practice.

Pressures to close the gap:

- Industry creation of desired engineering abilities that should be the outcome of engineering education.
- Accreditation board adoption of similar outcome and assessment criteria.

Attributes: Desired Outcomes

Boeing

- Good understanding of engineering science
- Good understanding of design and manufacturing
- Multi-disciplinary, systems perspective
- Understanding of the *context* in which engineering is practiced.
 - Economics
 - History
 - The environment
 - Customer and societal needs
- Good communication skills
- Profound understanding of the importance of teamwork

<u>ABET</u>

- Ability to apply knowledge
- Ability to design and conduct experiments
- Ability to design system, component, or process
- Ability to function on multidisciplinary teams
- Understanding of ethical responsibility
- Understand impact of engineering in global and societal context
- Ability to use techniques, skills and tools necessary for engineering practice

Essential Functions of an Engineer:

Graduating engineers should be able to: Conceive-design-implement-operate (CDIO) Complex value-added engineering systems (Technical) In a modern team-based environment (Interpersonal) And are mature and thoughtful individuals (Personal)

Map of the new CDIO syllabus

Detail of the CDIO syllabus

1 TECHNICAL KNOWLEDGE AND REASONING

- 1.1. KNOWLEDGE OF UNDERLYING SCIENCES
- 1.2. CORE ENGINEERING FUNDAMENTAL KNOWLEDGE
- 1.3. ADVANCED ENGINEERING FUNDAMENTAL KNOWLEDGE

2 PERSONAL AND PROFESSIONAL SKILLS AND ATTRIBUTES

- 2.1. ENGINEERING REASONING AND PROBLEM SOLVING
- 2.2. EXPERIMENTATION AND KNOWLEDGE DISCOVERY
- 2.3. SYSTEM THINKING
- 2.4. PERSONAL SKILLS AND ATTITUDES
- 2.5. PROFESSIONAL SKILLS AND ATTITUDES

3 INTERPERSONAL SKILLS: TEAMWORK AND COMMUNICATION

- 3.1. TEAMWORK
- 3.2. COMMUNICATION
- 3.3. COMMUNICATION IN FOREIGN LANGUAGES
- 4 CONCEIVING, DESIGNING, IMPLEMENTING AND OPERATING SYSTEMS IN THE ENTERPRISE AND SOCIETAL CONTEXT
 - 4.1. EXTERNAL AND SOCIETAL CONTEXT
 - 4.2. ENTERPRISE AND BUSINESS CONTEXT
 - 4.3. CONCEIVING AND ENGINEERING SYSTEMS
 - 4.4. DESIGNING
 - 4.5. IMPLEMENTING
 - 4.6. OPERATING

Spring Learning Objectives

Spring 2004 System Problem Objectives	CDIO Syllabus		
Apply lecture disciplines to CDIO of an aerospace system	 1.0 Technical Knowledge and Reasoning 2.1 Problem Solving 2.2 Knowledge Discovery 2.3 System Thinking 2.4 Personal Skills 		
Develop engineering design, reasoning, teamwork, and communication skills	2.5 Professional Skills 3.1 Teamwork		
Develop engineering product development skills	3.2 Communication		
HAVE FUN!	4.1 Societal Context		
Objectives are to be achieved through class project	 4.2 Business Context 4.3 Conceiving 4.4 Designing 4.5 Implementing 4.6 Operating 		

CDIO Syllabus covered by System Problems

Fall	Spring
Weekly individual assignments	Semester long team assignment
Self-contained assignments	Interdependent assignments
Progressively more complex assignments	Progressively more complex assignments
Integration of 1-2 disciplines	Integration of 2-3+ disciplines

CDIO Syllabus Activities

Communication

Example Forms of Communication

U.S. Airways Systems

Functional Requirements	Design Idea	Analysis
Take reservations	Internet At the counter	Cost, Time, Cost, Efficiency Cost, Cust Set
Give boarding passes	Kiosks At the counter	Usability, FAA Regs Efficiency cust sat
Put people on plane	Board by row Board by section Open seating	Cust Sat, Time, FAA Regulations
Fly people long distance	Boeing 777 Boeing 747	Efficiency, Load factor
	Rolls-Royce GE Aircraft engines	Efficiency, Reliability, Service cost

Design Selection

	F-14	F/A-18	Su-27	JSF
Available Now	N	Y	Y	N
Reasonable Cost	N	?	Y	Ν
Sea-based Deep Interdiction	Y	Ν	Y	Y
TOTAL			\checkmark	

Systems

- People,
 - Product, Process

U.S. Airways

McDonald's

 Deliver functionality

Global Positioning System

AWACS

Getting groups

- of people to:
 - conceive
 - design
 - implement and
 - operate

systems can be done well!

Keys for Success

<u>Design</u>

- Process
- Analysis

Project Mgmt

- Time
- Resources
- Risk

<u>Teamwork</u>

- Communication
- Coordination
- Roles & Responsibilities
- Motivation!

<u>Tools:</u>

FRDIARRC

<u>Tools:</u>

- WBS
- Gantt Chart

<u>Tools:</u>

- Comm Plan
- Roles & Resp
- Ground Rules
- Effective Mtgs

Unified Aerial Competition 2004

2004 Requirements and Resources

- Develop a system to participate in an aerial competition
- System must be ready by late April 2004
- Endurance flight with operations and egg payload (1-4)
- Don't crack or break egg during handling, loading, flight, landing
- 5 people, 9 weeks, 4hrs/person/week, kit, supplies, flight training

Project-based Learning

Backup

2001 - 2003 Performance

	2001				
	Fly	L1	L2	L3	
Team		Empty Flight	Load Pennies	Loaded Flight	
14					
13					
12					
11					
10					
6					
4					
3					
2					
9					
8					
7					
5					
1					

	2002				
	Fly	L1	L2	L3	
Team		Empty Flight	Load Egg	Loaded Flight	
12					
11					
9					
7					
6					
3					
2					
8					
1					
10					
5					
4					

	2003				
	Fly	L1	L2	L3	
Team		Empty Flight	Load Eggs	Loaded Flight	
13					
12					
1					
2					
14					
10					
6					
9					
4					
5					
11					
3					
7					
8					

5 February 2004

2001-2003 UAC Performance

	2001		2002		2003	
Number of Teams	14		12		14	
Number of Flying Planes	13	93%	12	100%	14	100%
Completed Competition	6	43%	7	58%	12	86%
Partially Completed Competition	3	21%	2	17%	0	0%
Did Not Complete Competition	5	36%	3	25%	2	14%
Number of Competition Flights	26		52		39	