Introduction to Computers and Programming

Prof. I. K. Lundqvist

Some slides adapted from:
6.034 Tomas Lozano Perez,

Russell and Norvig AIMA and
16.410 Brian C. Williams

Today

- Problem Formulation
- Problem solving as state space search
- Definition of Graphs
- Types of Graphs
- Shortest Path problems
- Dijkstra's Algorithm

Today

- Problem Formulation
- Problem solving as state space search
- Definition of Graphs
- Types of Graphs
- Shortest Path problems
- Dijkstra's Algorithm

Complex missions must carefully:

- Plan complex sequences of actions
- Schedule tight resources
- Monitor and diagnose behavior
- Repair or reconfigure hardware.
\Rightarrow Most AI problems, like these, may be formulated as state space search.

Simple \longrightarrow Trivial

Can the astronaut get its produce safely across the Martian canal?

Astronaut
Goose Grain
Fox

Rover

- Astronaut + 1 item allowed in the rover.
- Goose alone eats Grain
- Fox alone eats Goose

Problem Solving as State Space Search

- Formulate Goal
- State
- Astronaut, Fox, Goose \& Grain across river
- Formulate Problem
- States
- Location of Astronaut, Fox, Goose \& Grain at top or bottom river bank
- Operators
- Move rover with astronaut \& 1 or 0 items to other bank
- Generate Solution
- Sequence of States
- Move(goose, astronaut), Move(astronaut), . . .

Today

- Problem Formulation
- Problem solving as state space search
- Definition of Graphs
- Types of Graphs
- Shortest Path problems
- Dijkstra's Algorithm

Graph

- A graph is a generalization of the simple concept of a set of dots (called vertices or nodes) connected by links (called edges or arcs)
- Example: graph with 6 vertices and 7 edges

Examples of Graphs

Graphs

- A graph $G=(V, E)$ is a finite nonempty set of vertices and a set of edges

- An empty graph is the graph whose edge set is empty (1) $V=\{1\}$

$$
E=\{\varnothing\}
$$

- The null graph is the graph whose $\mathrm{V}=\{\varnothing\}$ edge set and vertex set are empty $\quad \mathrm{E}=\{\varnothing\}$

Examples of Graphs

Graph AirlineRoutes is represented as the pair (V,E)

$$
\begin{aligned}
& V=\{\text { Bos, SFO, LA, Dallas, Wash DC }\} \\
& E=\{(\text { SFO,Bos }),(\text { SFO, LA }),(\text { LA, Dallas }),(\text { Dallas, Wash DC }) \ldots\}
\end{aligned}
$$

Graphs

- A loop in a graph is an edge e in E whose endpoints are the same vertex.
- A simple graph is a graph with no loops, and there is at most one edge between any pair of vertices.

A simple graph with
$\mathrm{V}=\{1,2,3,4,5,6\}$
$E=\{(1,2),(1,4),(2,3),(2,4),(3,5),(5,6),(4,5)\}$

Graphs

- A multigraph has two or more edges that connect the same pair of vertices
- A cycle is a path that begins and ends with the same vertex
- A cycle of length 1 is a loop
- $(1,2,3,5,4,2,1)$ is a cycle of length 6

Vertices

- Two vertices, u and v in an undirected graph G are called adjacent (or neighbors) in G, if $\{(u, v)\}$ is an edge of G.
- The degree of a vertex in an undirected graph is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex.

Adjacency Matrix

- A finite graph is often represented by its adjacent matrix.
- An entry in row I and column j gives the number of edges from the $\mathrm{ith}^{\text {th }}$ to the $\mathrm{j}^{\text {th }}$ vertex.

$\left[\begin{array}{llllll}0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right]$

Layout of Graphs

Walks and Paths

- A walk is a sequence of vertices (v_{1}, v_{2}, \ldots, v_{k}) in which each adjacent vertex pair is an edge
- A path is a walk with no repeated vertices

Walk (1,2,3,4,2)

Path (1,2,3,4)

"The $1^{\text {st }}$ problem in Graph Theory" Seven Bridges of Königsberg

- The city of Königsberg was set on the River Pregel, and included two large islands which were connected to each other and the mainland by seven bridges.
- Was it possible to walk a route that crossed each bridge exactly once, and return to the starting point?

"The $1^{\text {st }}$ problem in Graph Theory" Seven Bridges of Königsberg
- An Eulerian path in a graph is a path that uses each edge precisely once.
- If such path exists, the graph is called traversable
- Euler showed that an Eulerian cycle exists if and only if all vertices in the graph are of even degree.

Weighted Graph

- A weighted graph associates a value (weight) to every edge in the graph.
- A weight of a path in a weighted graph is the sum of the weights of the traversed edges.

- Directed graph (digraph) is a graph with one-way edges

Today

- Problem Formulation
- Problem solving as state space search
- Definition of Graphs
- Types of Graphs
- Shortest Path problems
- Dijkstra's Algorithm

Shortest Path Problems

- The shortest path from v_{1} to v_{2}
- Is the path of the smallest weight between the two vertices
- Shortest may be least number of edges, least total weight, etc.
- The weight of that path is called the distance between them

Shortest Path Problems

- Example: the weight can be mileage, fares, etc.

Shortest Path Problems

- Dijkstra's algorithm
- Finds shortest path for a directed and connected graph $G(V, E)$ which has nonnegative weights.
- Applications:
- Internet routing
- Road generation within a geographic region
- ...

Dijkstra's Algorithm

- Dijkstra(G,w,s)

$$
\begin{aligned}
& \text { Init_Source(G,s) } \\
& S:=\text { empty set } \\
& Q:=\text { set of all vertices }
\end{aligned}
$$

while Q is not an empty set loop
$\mathrm{u}:=$ Extract_Min(Q)
S := S union $\{u\}$ for each vertex v which is a neighbor of u loop Relax(u,v,w)

Dijkstra's Algorithm

- Init_Source(G,s)
for each vertex v in V[G] loop
$\mathrm{d}[\mathrm{v}]:=$ infinite
previous[v] := 0
$\mathrm{d}[\mathrm{s}]:=0$
- $\quad \mathrm{v}=$ Extract_Min(Q) searches for the vertex v in the vertex set Q that has the least $\mathrm{d}[\mathrm{v}$] value. That vertex is removed from the set Q and then returned.
- Relax(u,v,w)
if $d[v]>d[u]+w(u, v)$ then
$d[v]:=d[u]+w(u, v)$
previous[v] := u

Dijkstra's Algorithm

$\mathrm{V}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{s}\}$
$\mathrm{E}=\{(\mathrm{s}, \mathrm{c}),(\mathrm{c}, \mathrm{d}),(\mathrm{d}, \mathrm{b}),(\mathrm{b}, \mathrm{d})$,
(c,b), (a,c), (c,a), (a,b), (s,a)\}
$S=\{\varnothing\}$
$\mathrm{Q}=\{\mathrm{s}, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$
$\mathrm{d}=\left(\begin{array}{c}0 \\ \infty \\ \infty \\ \infty \\ \infty\end{array}\right) \quad$ prev $=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right)$

Dijkstra's Algorithm

$$
\begin{aligned}
& S=\{s\} \\
& Q=\{a, b, c, d\}
\end{aligned}
$$

$$
\mathrm{d}=\left(\begin{array}{c}
0 \\
\infty \\
\infty \\
\infty \\
\infty
\end{array}\right) \rightarrow\left(\begin{array}{c}
0 \\
10 \\
\infty \\
5 \\
\infty
\end{array}\right]
$$

Extract_Min $(\mathrm{Q}) \rightarrow \mathrm{s}$
Neighbors of $s=a, c$
Relax (s,c,5)
Relax (s,a,10)

Dijkstra's Algorithm

$\mathrm{S}=\{\mathrm{s}, \mathrm{c}\}$
$\mathrm{Q}=\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}$

Extract_Min (Q) \rightarrow c
Neighbors of c = a, b, d
Relax (c,a,3)
Relax (c,b,9)
Relax (c,d,2)

Dijkstra's Algorithm

$$
\begin{aligned}
& S=\{s, c, d\} \\
& Q=\{a, b\}
\end{aligned}
$$

$$
\mathrm{d}=\left(\begin{array}{l}
0 \\
8 \\
14 \\
5 \\
7
\end{array}\right) \rightarrow\left(\begin{array}{c}
0 \\
8 \\
13 \\
\frac{5}{7}
\end{array}\right)
$$

Extract_Min (Q) \rightarrow d Neighbors of $d=b$ Relax (d,b,6)

$$
\operatorname{prev}=\left(\begin{array}{l}
0 \\
\mathrm{c} \\
\mathrm{c} \\
\mathrm{~s} \\
\mathrm{c}
\end{array}\right) \rightarrow\left(\begin{array}{l}
0 \\
\mathrm{c} \\
\mathrm{~d} \\
\mathrm{~s} \\
\mathrm{c}
\end{array}\right)
$$

Dijkstra's Algorithm

$S=\{s, c, d, a\}$
$Q=\{b\}$

Extract_Min (Q) \rightarrow a
Neighbors of $\mathrm{a}=\mathrm{b}, \mathrm{c}$
Relax (a,b,1)
Relax (a,c,3)

$$
\operatorname{prev}=\left(\begin{array}{l}
0 \\
\mathrm{c} \\
\mathrm{~d} \\
\mathrm{~s} \\
\mathrm{c}
\end{array}\right) \rightarrow\left(\begin{array}{l}
0 \\
\mathrm{c} \\
\mathrm{a} \\
\mathrm{~s} \\
\mathrm{c}
\end{array}\right)
$$

Dijkstra's Algorithm

$\mathrm{S}=\{\mathrm{s}, \mathrm{c}, \mathrm{d}, \mathrm{a}, \mathrm{b}\}$
$\mathrm{Q}=\{ \}$
$\mathrm{Q}=\{ \}$
$\mathrm{d}=\left(\begin{array}{l}0 \\ 8 \\ 9 \\ 5 \\ 9\end{array}\right) \rightarrow\left(\begin{array}{l}0 \\ 8 \\ 9 \\ 5 \\ 7\end{array}\right)$
Extract_Min (Q) \rightarrow b
Neighbors of $b=d$
Relax (b, d, 4)

$$
\operatorname{prev}=\left(\begin{array}{l}
0 \\
\mathrm{c} \\
\mathrm{a} \\
\mathrm{~s} \\
\mathrm{c}
\end{array}\right) \rightarrow\left(\begin{array}{l}
0 \\
\mathrm{c} \\
\mathrm{a} \\
\mathrm{~s} \\
\mathrm{c}
\end{array}\right)
$$

