
Introduction to Computers and
Programming

Lecture 4

Prof. I. K. Lundqvist

Reading: B pp. 20-46 ; FK pp. 157-165, 245-255 Sept 10 2003

Recap (1/3)

Context Clause Indicates that package
with Ada.Text_Io; Ada.Text_Io is used by

the program
Program Heading Identifies Unified as the
procedure Unified is name of the program

Constant declaration Associates the constant,
Tax : constant Float := 17.00;
Star : constant Character := ‘*’;

Tax, with the Float value
17.00

Variable declaration Declares a variable
X : Float; object named X for
Y : Integer := 42; storage of Integer

values

Recap (2/3)

Assignment statement Computes the product of
Distance := Speed * Time; Speed and Time and

assigns it to Distance
Input Statements Enters data into the
Ada.Text_Io.Get character variable Initial

(Item =>Initial);

Input Statements … into the integer
Ada.Integer_Text_Io.Get variable Age

(Item => Age);

Input Statements … into the float variable
Ada.Float_Text_Io.Get PayRate

(Item => PayRate);

Recap (3/3)

Output Statements Displays the value of
Ada.Text_Io.Put (Item =>Initial); the character variable

Initial

Output Statements
Ada.Integer_Text_Io.Put

(Item =>HowMany, Width=>3);

… integer variable
HowMany, using five
columns on the display

Output Statements
Ada.Float_Text_Io.Put

(Item => GrossPay,
Fore => 4,
Aft => 2,
Exp => 0);

… float variable
GrossPay using four
columns before the
decimal point and two
columns after the
decimal point

Data types
String type

characters as a single unit of data

Max_Str_Length : constant := 26;
Alphabet, Response:String(1..Max_Str_Length);

String Operations

Alphabet := “abcdefghijklmnopqrstuvwxyz”
Response := Alphabet;

Alphabet(1..3) & Alphabet(26..26)

Alphabet & “.”);

• Assignment

Put(Item => “The alphabet is “ &

• Used when representing a sequence of

– How many characters?
– String (1 .. Maxlen);
– Example:

• Concatenation (&)

Sub-strings

– alphabet(10) 'j'
alphabet(17) 'q'

– alphabet(20..23) "tuvw"
alphabet(4..9) "defghi"

– response(1..4) := "FRED";
response "FREDefghijklmnopqrstuvwxyz"

String I/O

•Get(Item => A_String);

•Get_Line(Item => A_String, Last => N);

• Exact length needed

– Get_Line
• Variable length accepted
• Returns string and length

• Individual character: specify position

• Slice: specify range of positions

• Assign to compatible slice

• Text_Io
– Output: Put, Put_Line
– Get

Control Structures
Selection statements

statements

• if-then, when a single action might be done
• if-then-else, to decide between two possible

actions
• if-then-elsif, to decide between multiple actions

, also for deciding between
multiple actions

if-then Statements

– statement_before;
if test then
statement(s)_1;

;
statement_after;

statement_before

test

statement(s)_1

statement_after

true

false

end if

• Ada provides two types of selection

– IF statements

– Case statements

• Statement form

• Statement semantics

if-then-else Statements

– statement_before;
if test then
statement(s)_1;

else
statement(s)_2;

;
statement_after;

statement_before

test

statement(s)_1

statement_after

truefalse

statement(s)_2

Multiple Selections

– statement_before;
if test_1 then

statement(s)_1;
elsif test_2 then

statement(s)_2;
else

statement(s)_3;
;

statement_after;

end if

end if

• Statement form

• Statement semantics

• Statement form

if_then_elsif Example (0/5)

example was distributed in class today:

bank.adb

if_then_elsif Example (1/5)

•
–

amount of money (positive integer only) in a bank
account. It will then ask for the amount of money
(integers greater than zero) to be withdrawn.

–
amount in the account, by more than $50, the
program is to display a message that the transaction
is refused, and the unchanged balance is displayed.

–
or equal to the amount in the account, the
transaction is accepted and the new balance in the
account is displayed.

–
amount in the account, by up to $50, the program is
to accept the transaction and display the new
balance, with a warning that the account is
overdrawn.

Problem specification
A program is required which will ask the user for the

If the amount to be withdrawn is greater than the

If the amount of money to be withdrawn is less than

If the amount to be withdrawn is greater than the

• Resulting program of the following

if_then_elsif Example (2/5)

• Decision table
– A multiple alternative if may often be

summarized by a decision table listing the
alternatives

Balance after Action
withdrawal
>= 0 Accept withdrawal

>= -50 and < 0 Overdraft

< -50 Refuse withdrawal

if_then_elsif Example (3/5)

100
Enter the withdrawal 50
Accepted. Balance is 50

76
Enter the withdrawal 150
Refused! Balance is 76

50
Enter the withdrawal 75
Overdraft! Balance is -25

Enter balance of the account

Enter balance of the account

• Alternative user interfaces
– Enter balance of the account

if_then_elsif Example (4/5)

•
1. Get balance and withdrawal

2. Calculate resulting balance

3.
then

else if new balance between zero and overdraft limit

else

Algorithm

If new balance is >= zero

1. Get balance
2. Get withdrawal

1. New balance = old balance – withdrawal

1. Indicate transaction accepted

2. Indicate overdraft is used

3. Indicate transaction rejected

if_then_elsif Example (5/5)

• Data design

NAME TYPE Notes

Overdraft_Limit Integer -50 (for ease of change)

Zero Integer 0 (for readability only)

Balance Integer Balance in the account

Withdrawal Integer Amount requested by user

Resulting_Balance Integer Balance after withdrawal

Conditions

TRUENOT(FALSE)

FALSENOT(TRUE)

Conditions
Examples

or (sex = 'F')

• not ((age >= 18) and (sex = 'M'))

and (sex = 'F')) or ((age >=
65) and (sex = 'M'))

• :ULWLQJ�FRQGLWLRQV�DQG�WKHLU�DVVRFLDWHG�DFWLRQV�FRUUHFWO\�
FDQ�EH�WULFN\�� O FDQ�KHOS�\RX�PDNH�VXUH�WKH�
FRQGLWLRQV�DQG�DVVRFLDWHG�DFWLRQV�DUH�FRUUHFW��

7UXWK�WDE HV�

• NOT

• AND

• OR

• XOR

• (age < 18)

• ((age >= 60)

F or F F

F or T T

T or F T

T or T T

F and F F

F and T F

T and F F

T and T T

F xor F F

F xor T T

T xor F T

T xor T F

Truth Tables

• Nested if statements

– if test_1 then

if test_2 then

statement(s)_1;

else

statement(s)_2;

end if;

else

if test_3 then

statement(s)_3;

else

statement(s)_4;

end if;

end if;

test_1 test_2 test_3 s_1 s_2 s_3 s_4

F F F *
F F T *
F T F *
F T T *
T F F *
T F T *
T T F *
T T T *

Control Structures
Loop Statements

• Definite iteration is where the set of actions
is performed a known number of times. The
number might be determined by the program
specification, or it might not be known until

the iteration.
– FOR statement for definite

iteration.

• Indefinite iteration is where the set of
actions is performed a unknown number of

execution of the loop.
– WHILE statement and general

LOOP statement for indefinite iteration.

the program is executing, just before starting

Ada provides the

times. The number is determined during

Ada provides the

General Loop Statements

• loop
statements_1;

test;
statements_2;

;

statements_1

exit
condition
satisfied

?

true

false

statements_2

CQ

For the given input, which way will the robot
behave?

1.Go back once and turn left

2.Turn right twice

3.Go back twice the distance and turn right

exit when

end loop

Bits, Nibbles, Bytes

addressable unit

hex digit

Hexadecimal

16 numeral system using symbols
0-9 and A-F

hex digit

consecutive hexadecimal digits.

• Bit (binary digit)
– Two symbols: 0 / 1, false / true, …

• Byte
– Collection of bits, usually 8 bits.
– Always atomic, i.e., the smallest

• Nibble
– Half a byte, 4 bits.
– More formally called a

• Base

• Easy mapping from four bits to a single

• Can represent every Byte as two

Hexadecimal

bin hex dec
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4

…
1001 9 9
1010 A 10
1011 B 11

…
1111 F 15

Main Memory

units called: Cells
Byte

• Main memory arranged in manageable

– Typically 8 bits:

Memory Cells

name, called its address

accessed in random
order

write

10100110 01111010 10100110 11010110 10100010

• Each cell is assigned a unique

• Stored data can be

• Read/

Cell 0 Cell 1 Cell 3 Cell 5 Cell 2 Cell 4 Cell 6

10111010 10010101

Little/Big-Endian

• 00000000 00000000 00000100 00000001

Address Big-Endian
repr. of 1025

Little-Endian
repr. of 1025

00 0000 0000 0000 0001

01 0000 0000 0000 0100

02 0000 0100 0000 0000

03 0000 0001 0000 0000

Memory Capacity

• Main memory systems usually has total
number of cells as a power of two

Name Abbr Factor SI size
kilo K 210 = 1024 103 = 1000
mega M 220 = 1 048 576 106 = 1 000 000
giga G 230 = 1 073 741 824 109

tera T 240 = 1 099 511 627 776 1012

…

Information as Bit Patterns

images, sound

–
Information Interchange)

–
interchange Code)

– Unicode
–

(Extended) ASCII (American Standard Code for

EBCDIC (Extended Binary Coded Decimal

ISO standards

1
2
3
4
5

A
B
C
D
E

• Representing text, numeric values,

• Text

Character on
the screen

Binary value used
to process it

Character on
the screen

Binary value used
to process it

0110001
0110010
0110011
0110100
0110101

1000001
1000010
1000011
1000100
1000101

ASCII

01101000 01100101 01101100 01101100 01101111

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS

TAB
LF
VT
FF
CR
SO
SI

ASCII Hex Symbol

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?

ASCII Hex Symbol

96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F

`
a
b
c
d
e
f
g
h
i
j
k
l

m
n
o

ASCII Hex Symbol

… …

Numeric Values
2510 using ASCII:

00110010 00110101
00000000 0000110012

3 7 5

1 0 1 1

O
n

e

Ei
g

h
t

O
n

e

25 24 23 22 21 20

32 16 8 4 2 1

 1 0 1 1 0 1

32 + 0 + 8 + 4 + 0 + 1 = 45

• Storing the value of

• Binary notation:

Representation

Position's quantity

Representation

Position's quantity

H
u

n
d

re
d

Te
n

Fo
u

r

Tw
o

Base ten system

Base two system

1. Binary place

2. Position's quantity

3. Example binary pattern

4. Total (2. x 3.)

Finding Binary Representation of
Large Values

1. Divide the value by 2 and
record the remainder

2. As long as the quotient
obtained is not 0,
continue to divide the
newest quotient by 2 and
record the remainder

3. Now that a quotient of 0
has been obtained, the
binary representation of
the original value consists
of the remainders listed
from right to left in the
order they were recorded

2 1
0 R1

2 3
1 R1

2 6
0 R0

2 13
6 R1

1 1 0 1

