Introduction to Computers and Programming

Prof. I. K. Lundqvist

Big-O

- Given function $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if there are positive constants c and n_{0} so that $\mathbf{f}(\mathbf{n}) \leq \mathbf{c g}(\mathbf{n})$ for $\mathbf{n} \geq \mathbf{n}_{\mathbf{0}}$
- Example: $2 \mathrm{n}+10$ is $\mathrm{O}(\mathrm{n})$
- $2 \mathrm{n}+10 \leq \mathrm{cn}$
$-10 \leq n(c-2)$
- $\mathrm{n} \geq 10 /(\mathrm{c}-2)$
- Pick c = 3 and $n_{0}=10$

Big-O

- $4 \mathrm{n}-2$ is $\mathrm{O}(\mathrm{n})$
- Need a c >0 and $\mathrm{n}_{0} \geq 1$ so that
$\mathbf{4 n - 2} \leq \mathbf{c n}$ for $\mathbf{n} \geq \mathbf{n}_{\mathbf{0}}$
true for $\mathbf{c}=\mathbf{4}$ and $\mathbf{n}_{\mathbf{0}}=\mathbf{1}$
- $5 n^{3}+10 n^{2}+4 n+2$ is $O\left(n^{3}\right)$
- Need a c >0 and $\mathrm{n}_{0} \geq 1$ so that
$\mathbf{5 n} \mathbf{n}^{\mathbf{3}} \mathbf{1 0} \mathrm{n}^{\mathbf{2}} \mathbf{+ 4 n + 2} \leq \mathrm{cn}^{3}$ for $\mathrm{n} \geq \mathbf{n}_{\mathbf{0}}$
true for $\mathbf{c}=\mathbf{2 1}$ and $\mathbf{n}_{\mathbf{0}}=\mathbf{1}$
- $2 \log _{2} n+3$ is $O\left(\log _{2} n\right)$
- Need a c > 0 and $n_{0} \geq 1$ so that
$\mathbf{2 l o g}_{2} \mathbf{n}+\mathbf{3} \leq \mathbf{c} \log _{2} \mathbf{n}$ for $\mathbf{n} \geq \mathbf{n}_{\mathbf{0}}$ true for $\mathbf{c}=\mathbf{5}$ and $\mathbf{n}_{\mathbf{0}}=\mathbf{2}$

Big-O

- Given function $f(n)$ and $g(n)$, we say that $\mathbf{f}(\mathbf{n})$ is $\mathbf{O}(\mathbf{g}(\mathbf{n}))$ if there are positive constants c and n_{0} so that $\mathrm{f}(\mathrm{n}) \leq \mathrm{cg}(\mathrm{n})$ for $\mathrm{n} \geq \mathrm{n}_{0}$

	$f(n)$ is $O(g(n))$	$g(n)$ is $O(f(n))$
$g(n)$ grows more	Yes	No
$f(n)$ grows more	No	Yes
$g(n)$ and $f(n)$ has same growth	Yes	Yes

Ex 1

```
type Int_Array is array (Integer range <>) of Integer;
procedure Measure (A : Int_Array ) is
    Sum : Integer := 0;
begin
    for I in A'range loop
        for J in A'range loop
        Sum := Sum + A(J); Inner loop
        end loop;
        Outer loop
end Measure;
```

Statement	Runs in X time	Executes \# of times
Variable Sum is initialized	Constant1	1
Array of size n is created	Constant2	1
Variable I is created and initialized	Constant4	$\mathrm{n}+1$
I is tested against A'range (n)	Constant5	n
Variable J is created and initialized	Constant6	$\mathrm{n}(\mathrm{n}+1)$
J is tested against A'range (n)	Constant7	n^{2}
Sum is incremented by A(J)	Constant8	n^{2}
J is incremented by 1	Constant9	n
I is incremented by 1		

BigO.adb

Ex 2

```
type Int_Array is array (Integer range <>) of Integer;
procedure Measure (A : Int_Array ) is
    Sum : Integer := 0;
begin
    for I in A'range loop
        for J in 1 .. I loop -- only change to Ex 1
            Sum := Sum + A(J);
        end loop;
    end loop;
end Measure;
```

$$
C Q-E x 2
$$

Variable J is created and initialized	Constant5	
J is tested against I	Constant6	
Sum is incremented by A(J)	Constant7	
J is incremented by 1	Constant8	

1. N ,
$\mathrm{N} *(\mathrm{~N}+1), \quad \mathrm{N} * \mathrm{~N}$,
N
2. N,
$\mathrm{N} *(\mathrm{I}+1), \quad \mathrm{N} * \mathrm{~N}$,
$\mathrm{N} * \mathrm{~N}$
3. $N, \quad N^{*}(I+1), \quad N^{*}$ I, $\quad N^{*}$ I
4. I still don't get it

Ex 3

```
type Int_Array is array (Integer range <>) of Integer;
procedure Measure (A : Int_Array ) is
    Sum : Integer := 0;
begin
    for I in A'range loop
        for J in 1 .. 4 loop -- only change to Ex 2
            Sum := Sum + A(I); -- only change to Ex 2
        end loop;
    end loop;
end Measure;
```

$$
\text { CQ - Ex } 3
$$

4. I still don't get it

Ex 4

```
function Factorial (N : in Natural ) return Positive is
begin
    if N = 0 then
        return 1;
        else
        return N * Factorial (N-1);
        end if;
end Factorial;
```

$$
\text { CQ - Ex } 4
$$

How long time does executing the Factorial algorithm take?

1. $O(n)$
2. $O\left(n^{2}\right)$
3. $\log n$
4. 42

Divide and Conquer

- It is an algorithmic design paradigm that contains the following steps
- Divide: Break the problem into smaller sub-problems
- Recur: Solve each of the sub-problems recursively
- Conquer: Combine the solutions of each of the sub-problems to form the solution of the problem

Represent the solution using a recurrence equation

Merge Sort

- Divide: Split the array into into two subarrays $A(p .$. mid) and $A(m i d+1$.. r), where mid is $(p+r) / 2$
- Conquer by recursively sorting the two subarrays A(p.. mid) and A(mid+1 .. r)
- Combine by merging the two sorted subarrays $A(p$.. mid) and $A($ mid +1 .. r) to produce a single sorted subarray A(p .. r)

Merge

- Input: Array A and indices p, mid, r such that
- $\mathrm{p} \leq$ mid $<r$
- subarray $A(p$.. mid) is sorted and subarray $A($ mid+1 .. r) is sorted
- Output: single sorted array A(p .. r)
- $\mathbf{T}(\mathbf{n})=\mathbf{O}(\mathbf{n})$,
where $n=r-p+1=$ \# of elements being merged

Merge Sort Analysis

- The base case: when $\mathrm{n}=1, \mathrm{~T}(\mathrm{n})=\mathrm{O}(1)$
- When $\mathrm{n} \geq 2$, time for merge sort steps:
- Divide: Compute mid as the average of p, r \Rightarrow cost $=0$ (1)
- Conquer: Solve 2 subproblems, each of size n/ 2 \Rightarrow cost $=2 \mathrm{~T}(\mathrm{n} / 2)$
- Combine: merge to an n element subarray

$$
\Rightarrow \text { cost }=O(\mathrm{n})
$$

$$
\begin{aligned}
\mathrm{T}(\mathrm{n})= & O(1) & & n=1 \\
& 2 T(n / 2)+O(n)+O(1) & & n>1
\end{aligned}
$$

Solving Recurrences: Iteration

- $T(n)=$

$$
\mathrm{aT}(\mathrm{n} / \mathrm{b})+\mathrm{cn}
$$

$$
a(a T(n / b / b)+c n / b)+c n
$$

$$
a^{2} T\left(n / b^{2}\right)+c n a / b+c n
$$

$$
a^{2} T\left(n / b^{2}\right)+c n(a / b+1)
$$

$$
a^{2}\left(a T\left(n / b^{2} / b\right)+c n / b^{2}\right)+c n(a / b+1)
$$

$$
a^{3} T\left(n / b^{3}\right)+c n\left(a^{2} / b^{2}\right)+c n(a / b+1)
$$

$$
a^{3} T\left(n / b^{3}\right)+c n\left(a^{2} / b^{2}+a / b+1\right)
$$

$$
a^{k} T\left(n / b^{k}\right)+c n\left(a^{k-1} / b^{k-1}+a^{k-2} / b^{k-2}+\ldots+a^{2} / b^{2}+a / b+1\right)
$$

$$
T(n)=\left\{\begin{array}{cc}
c \square & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- So we have
$-T(n)=a^{k} T\left(n / b^{k}\right)+c n\left(a^{k-1} / b^{k-1}+\ldots+a^{2} / b^{2}+a / b+\right.$ 1)
- For $k=\log _{b} n$
$-n=b^{k}$
$-T(n)=a^{k} T(1)+c n\left(a^{k-1} / b^{k-1}+\ldots+a^{2} / b^{2}+a / b+1\right)$
$=a^{k} c+c n\left(a^{k-1} / b^{k-1}+\ldots+a^{2} / b^{2}+a / b+1\right)$
$=c a^{k}+c n\left(a^{k-1} / b^{k-1}+\ldots+a^{2} / b^{2}+a / b+1\right)$
$=c n a^{k} / b^{k}+c n\left(a^{k-1} / b^{k-1}+\ldots+a^{2} / b^{2}+a / b+1\right)$
$=c n\left(a^{k} / b^{k}+\ldots+a^{2} / b^{2}+a / b+1\right)$

$$
T(n)=\left\{\begin{array}{cc}
c \square & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

- So with $k=\log _{b} n$

$$
-T(n)=c n\left(a^{k} / b^{k}+\ldots+a^{2} / b^{2}+a / b+1\right)
$$

- What if $\mathrm{a}=\mathrm{b}$?

$$
\begin{aligned}
-T(n) & =c n(k+1) \\
& =c n\left(\log _{b} n+1\right) \\
& =O(n \log n)
\end{aligned}
$$

```
\(T(n)=O(1) \quad n=1\)
\(2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{O}(\mathrm{n})+\mathrm{O}(1)\)
\(n>1\)
```


The Master Method

- Given: a divide and conquer algorithm
- An algorithm that divides the problem of size n into a subproblems, each of size n / b
- Let the cost of each stage (i.e., the work to divide the problem + combine solved subproblems) be described by the function f(n)
- The master method provides a simple "cookbook" solution

Simplified Master Method

- $\quad \mathbf{T}(\mathrm{n})=\mathrm{a} T(\mathrm{n} / \mathrm{b})+\mathrm{cn}^{\mathrm{k}}$, where $\mathrm{a}, \mathrm{c}>0$ and $\mathrm{b}>1$

$$
\mathrm{T}(\mathrm{n})= \begin{cases}O\left(n^{\log _{b} a}\right) & a \boxtimes b^{k \square} \\ O\left(n^{k} \log _{b} n\right) & a \nLeftarrow b^{k \square} \\ O\left(n^{k}\right) & a \measuredangle b^{k \square}\end{cases}
$$

The Towers of Hanoi

- Goal: Move stack of rings to another peg
- May only move 1 ring at a time
- May never have larger ring on top of smaller ring

The Towers of Hanoi

For simplicity, suppose there were just 3 disks

Since we can only move one disk at a time, we move the top disk from A to B.

The Towers of Hanoi

For simplicity, suppose there were just 3 disks

We then move the top disk from A to C .

The Towers of Hanoi

For simplicity, suppose there were just 3 disks

We then move the top disk from B to C.

The Towers of Hanoi

For simplicity, suppose there were just 3 disks

We then move the top disk from A to B.

The Towers of Hanoi

For simplicity, suppose there were just 3 disks

We then move the top disk from C to A .

The Towers of Hanoi

For simplicity, suppose there were just 3 disks

We then move the top disk from C to B .

The Towers of Hanoi

For simplicity, suppose there were just 3 disks

We then move the top disk from A to B.

The Towers of Hanoi

For simplicity, suppose there were just 3 disks

and we're done!
The problem gets more difficult as the number of disks increases...

The Towers of Hanoi

- 1 ring $\rightarrow 1$ operation
- 2 rings $\rightarrow 3$ operations
- 3 rings $\rightarrow 7$ operations
- 4 rings $\rightarrow 15$ operations

Cost: $2^{\mathrm{N}}-1=\mathrm{O}\left(2^{\mathrm{N}}\right)$

- 64 rings $\rightarrow \quad 2^{64}$ operations

Towers of Hanoi

- hanoi(from,to,other, number)
-- move the top number disks
-- from needle from to needle to
if number=1 then
move the top disk from needle from to needle to
else
hanoi(from,other, to, number-1)
hanoi(from,to,other, 1)
hanoi(other, to, from, number-1)
end

Some math that is good to know

- $\log _{b}(x y)=\log _{b} x+\log _{b} y$
- $\log _{b}(x / y)=\log _{b} x-\log _{b} y$
- $\log _{b} x a=a \log _{b} x$
- $\log _{b} a=\log _{x} a / \log _{x} b$
- $a^{(b+c)}=a^{b} a^{c}$
- $a^{b c}=\left(a^{b}\right)^{c}$
- $a^{b} / a^{c}=a^{(b-c)}$
- $b=a^{\log _{a} b}$
- $b^{c}=a^{\log _{a} b}$

