

Prof. I. K. Lundqvist

Recitation 3 April 23 2004

#### **Big-O**

- Given function f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n<sub>0</sub> so that f(n) ≤ cg(n) for n ≥ n<sub>0</sub>
- Example: 2n + 10 is O(n)
  - $-2n + 10 \le cn$
  - $-10 \le n(c 2)$
  - $-n \ge 10/(c-2)$
  - Pick c = 3 and n<sub>0</sub> = 10

#### Big-O



# Big-O

4

 Given function f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n<sub>0</sub> so that f(n) ≤ cg(n) for n ≥ n<sub>0</sub>

|                               | f(n) is O(g(n)) | g(n) is O(f(n)) |
|-------------------------------|-----------------|-----------------|
| g(n) grows more               | Yes             | No              |
| f(n) grows more               | No              | Yes             |
| g(n) and f(n) has same growth | Yes             | Yes             |

| Statement                             | Runs in<br>X time | Executes<br># of times |
|---------------------------------------|-------------------|------------------------|
| Variable Sum is initialized           | Constant1         | 1                      |
| Array of size n is created            | Constant2         | 1                      |
| Variable I is created and initialized | Constant3         | 1                      |
| I is tested against A'range (n)       | Constant4         | n+1                    |
| Variable J is created and initialized | Constant5         | n                      |
| J is tested against A'range (n)       | Constant6         | n(n+1)                 |
| Sum is incremented by A(J)            | Constant7         | n²                     |
| J is incremented by 1                 | Constant8         | n²                     |
| I is incremented by 1                 | Constant9         | n                      |

```
type Int_Array is array (Integer range <>) of Integer;
procedure Measure (A : Int_Array ) is
   Sum : Integer := 0;
begin
   for I in A'range loop
      for J in 1 .. I loop -- only change to Ex 1
        Sum := Sum + A(J);
   end loop;
end loop;
end Measure;
```

BigO2.adb

#### CQ – Ex 2

| Variable J is created and initialized |             |             | tialized  | Constant5 |  |
|---------------------------------------|-------------|-------------|-----------|-----------|--|
| J is tested against I                 |             |             | Constant6 |           |  |
| Sum is incremented by A(J)            |             |             | Constant7 |           |  |
|                                       | J is increr | nented by 1 |           | Constant8 |  |
| 1.                                    | N,          | N*(N+1),    | N*N,      | Ν         |  |

2. N, N\*(I+1), N\*N, N\*N

- 3. N, N\*(I+1), N\*I, N\*I
- 4. I still don't get it

```
type Int_Array is array (Integer range <>) of Integer;
procedure Measure (A : Int_Array ) is
   Sum : Integer := 0;
begin
   for I in A'range loop
      for J in 1 .. 4 loop -- only change to Ex 2
        Sum := Sum + A(I); -- only change to Ex 2
        end loop;
end loop;
end loop;
end Measure;
```

BigO3.adb

#### CQ – Ex 3

| Variable J is created and initialized |             |             | Constant5 |           |  |
|---------------------------------------|-------------|-------------|-----------|-----------|--|
| J is tested against I                 |             |             | Constant6 |           |  |
| Sum is incremented by A(J)            |             |             | Constant7 |           |  |
|                                       | J is increr | mented by 1 |           | Constant8 |  |
| 1.                                    | N,          | N*(I+1),    | N*I,      | N*I       |  |
| 2.                                    | N,          | N*5,        | N*4,      | N*4       |  |
| 3.                                    | N,          | N*5,        | 4,        | 4         |  |

4. I still don't get it



# **Divide and Conquer**

- It is an algorithmic design paradigm that contains the following steps
  - Divide: Break the problem into smaller sub-problems
  - Recur: Solve each of the sub-problems recursively
  - Conquer: Combine the solutions of each of the sub-problems to form the solution of the problem

Represent the solution using a recurrence equation

# Merge Sort

- Divide: Split the array into into two subarrays A(p .. mid) and A(mid+1 .. r), where mid is (p + r)/2
- Conquer by recursively sorting the two subarrays A(p .. mid) and A(mid+1 .. r)
- Combine by merging the two sorted subarrays A(p .. mid) and A(mid+1 .. r) to produce a single sorted subarray A(p .. r)

# Merge

- Input: Array A and indices p, mid, r such that
  - $-p \le mid < r$
  - subarray A(p .. mid) is sorted and subarray A(mid+1 .. r) is sorted
- Output: single sorted array A(p .. r)
- T(n) = O(n), where n=r-p+1 = # of elements being merged

16

#### Merge Sort Analysis

- The base case: when n = 1, T(n) = O(1)
- When  $n \ge 2$ , time for merge sort steps:
  - **Divide**: Compute mid as the average of p, r  $\Rightarrow cost = O(1)$
  - **Conquer**: Solve 2 subproblems, each of size n/2 $\Rightarrow$ cost = 2T(n/2)
  - **Combine**: merge to an *n* element subarray  $\Rightarrow \cos t = O(n)$

T(n) = O(1) n = 12T(n/2) + O(n) + O(1) n > 1

# Solving Recurrences: Iteration $T(n) = \begin{cases} c & n = 1\\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$ 18 • T(n) = aT(n/b) + cna(aT(n/b/b) + cn/b) + cn $a^{2}T(n/b^{2}) + cna/b + cn$ $2T(n/h^2) + cn(a/h + 1)$

$$T(n) = \begin{cases} c \square & n = 1\\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

• So we have  

$$- T(n) = a^{k}T(n/b^{k}) + cn(a^{k-1}/b^{k-1} + ... + a^{2}/b^{2} + a/b + 1)$$
• For k = log<sub>b</sub> n  

$$- n = b^{k} - T(n) = a^{k}T(1) + cn(a^{k-1}/b^{k-1} + ... + a^{2}/b^{2} + a/b + 1)$$

$$= a^{k}c + cn(a^{k-1}/b^{k-1} + ... + a^{2}/b^{2} + a/b + 1)$$

$$= ca^{k} + cn(a^{k-1}/b^{k-1} + ... + a^{2}/b^{2} + a/b + 1)$$

$$= cna^{k}/b^{k} + cn(a^{k-1}/b^{k-1} + ... + a^{2}/b^{2} + a/b + 1)$$

$$= cn(a^{k}/b^{k} + ... + a^{2}/b^{2} + a/b + 1)$$

| 2 | 0 |  |
|---|---|--|
|   |   |  |

$$T(n) = \begin{cases} c \square & n = 1\\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

• So with  $k = \log_b n$ - T(n) = cn(a<sup>k</sup>/b<sup>k</sup> + ... + a<sup>2</sup>/b<sup>2</sup> + a/b + 1)

T(n) = O(1) n = 12T(n/2) + O(n) + O(1) n > 1

## The Master Method

- Given: a *divide and conquer* algorithm
  - An algorithm that divides the problem of size *n* into *a* subproblems, each of size *n/b*
  - Let the cost of each stage (i.e., the work to divide the problem + combine solved subproblems) be described by the function *f(n)*
  - The master method provides a simple "cookbook" solution

#### Simplified Master Method

 $T(n) = aT(n/b) + cn^{k},$ where a,c > 0 and b > 1

(

$$\mathsf{T(n)} = \begin{cases} O(n^{\log_{b} a}) & a \ge b^{k} \\ O(n^{k} \log_{b} n) & a \Longrightarrow b^{k} \\ O(n^{k} \otimes a \boxtimes b^{k} & a \boxtimes b^{k} \end{cases}$$

• **Goal**: Move stack of rings to another peg

- May only move 1 ring at a time

 May never have larger ring on top of smaller ring

# The Towers of Hanoi

24

For simplicity, suppose there were just 3 disks



Since we can only move one disk at a time, we move the top disk from A to B.

For simplicity, suppose there were just 3 disks



We then move the top disk from A to C.

# The Towers of Hanoi

For simplicity, suppose there were just 3 disks



We then move the top disk from B to C.

For simplicity, suppose there were just 3 disks



For simplicity, suppose there were just 3 disks



For simplicity, suppose there were just 3 disks



and we're done!

The problem gets more difficult as the number of disks increases...

# The Towers of Hanoi

- 1 ring  $\rightarrow$  1 operation
- 2 rings  $\rightarrow$  3 operations
- 3 rings  $\rightarrow$  7 operations
- 4 rings  $\rightarrow$  15 operations

#### **Cost**: $2^{N}-1 = O(2^{N})$

• 64 rings  $\rightarrow$  2<sup>64</sup> operations

#### Towers of Hanoi

```
34
```

#### Some math that is good to know

- $\log_b(xy) = \log_b x + \log_b y$
- $\log_b(x/y) = \log_b x \log_b y$
- $\log_b xa = a \log_b x$
- $\log_{b}a = \log_{x}a/\log_{x}b$
- $a^{(b+c)} = a^b a^c$
- $a^{bc} = (a^b)^c$
- $a^{b}/a^{c} = a^{(b-c)}$
- $b = a^{\log_a b}$
- $b^c = a^{clog_ab}$