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Big-O 

f(n) and g(n), we say 
that f(n) is O(g(n)) if there are positive 
constants c and n0 so that 

f(n) ≤ cg(n) for n ≥ n0 

≤ cn 
≤ 

– n  ≥ 10/(c-2) 

0 = 10 

• Given function 

• Example:2n + 10 is O(n) 
– 2n + 10  
– 10 n(c – 2) 

– Pick c = 3 and n
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Big-O 
n) 

0 ≥ 1 so that 
4n-2 ≤ cn for n ≥ n0 

true for c = 4 and n0 = 1 

3 + 10n2 + 4n +2 is O(n3) 
0 ≥ 1 so that 

5n3+10n2+4n +2 ≤ cn3 for n ≥ n0 
true for c = 21 and n0 = 1 

2n + 3 is O(log2 n) 
0 ≥ 1 so that 

2log2 n + 3 ≤ c log2 n for n ≥ n0 
true for c = 5 and n0 = 2 

• 4n –  2 is O(
– Need a c > 0 and n

• 5n
– Need a c > 0 and n

• 2 log
– Need a c > 0 and n

Big-O 

• Given function f(n) and g(n), we say 
that f(n) is O(g(n)) if there are 
positive constants c and n0 so that 

f(n) ≤ cg(n) for n ≥ n0 

f(n) is O(g(n)) g(n) is O(f(n)) 

g(n) grows more 
Yes No 

f(n) grows more 
No Yes 

g(n) and f(n) has 
same growth Yes 

5 
Yes 
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type Int_Array (Integer range <>) of Integer; 

procedure Measure (A : Int_Array ) is 
Sum : Integer := 0;

begin 

for I in A'

for J in A'
Sum := Sum + A(J);

; 

; 

end Measure; 

Inner loop 

Outer loop 

Ex 1 

is array 

range loop 

range loop

end loop

end loop

Statement Runs in 
X time 

Executes 
# of times 

Variable Sum is initialized Constant1 1 

Array of size n is created Constant2 1 

Variable I is created and initialized Constant3 1 

I is tested against A’range (n) Constant4 n+1 

Variable J is created and initialized Constant5 n 

J is tested against A’range  (n) Constant6 n(n+1) 

Sum is incremented by A(J) Constant7 n2 

J is incremented by 1 Constant8 n2 

I is incremented by 1 Constant9 n 

BigO.adb 
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Ex 2 

type Int_Array (Integer range <>) of Integer; 

procedure Measure (A : Int_Array ) is 
Sum : Integer := 0;

begin 

for I in A'

for J in 1 .. I loop
Sum := Sum + A(J);

; 

; 

end Measure; 

BigO2.adb 

is array 

range loop 

–- only change to Ex 1 

end loop

end loop

CQ – Ex 2

Variable J is created and initialized Constant5 

J is tested against I Constant6 

Sum is incremented by A(J) Constant7 

J is incremented by 1 Constant8 

1. N, N*(N+1), N*N, N 

2. N, N*(I+1), N*N, N*N 

3. N, N*(I+1), N*I, N*I 

4. I still don’t get it 
9 
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Ex 3 

type Int_Array (Integer range <>) of Integer; 

procedure Measure (A : Int_Array ) is 
Sum : Integer := 0;

begin 

for I in A'

for J in 1 .. 4 loop -- only change to Ex 2
Sum := Sum + A(I); -- only change to Ex 2

; 

; 

end Measure; 

BigO3.adb 

is array 

range loop 

end loop

end loop

CQ – Ex 3

Variable J is created and initialized Constant5 

J is tested against I Constant6 

Sum is incremented by A(J) Constant7 

J is incremented by 1 Constant8 

1. N, N*(I+1), N*I, N*I 

2. N, N*5, N*4, N*4 

3. N, N*5, 4, 4 

4. I still don’t get it 
11 
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Ex 4 

function Factorial (N : in Natural ) return Positive is 
begin

if N = 0 then 
return 1;

else 
return N * Factorial (N-1);

;
end Factorial; 
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How long time does executing the 
Factorial algorithm take? 

2) 

end if

CQ – Ex 4 

1. O(n) 

2. O(n

3. log n 

4. 42 
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Divide and Conquer 

that contains the following steps 

– Divide: Break the problem into smaller 
sub-problems 

– Recur: Solve each of the sub-problems 
recursively 

– Conquer: Combine the solutions of each of 
the sub-problems to form the solution of 
the problem 

Represent the solution using a recurrence equation 
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Merge Sort 

• Divide
subarrays A(p .. mid) and A(mid+1 .. r), 
where mid is (p + r)/2 

• Conquer by recursively sorting the two 
subarrays A(p .. mid) and A(mid+1 .. r) 

• Combine by merging the two sorted 
subarrays A(p .. mid) and A(mid+1 .. r) to 

p .. r) 

• It is an algorithmic design paradigm 

: Split the array into into two 

produce a single sorted subarray A(
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Merge 

• Input: Array A and indices p, mid, r 
such that 
– p ≤ mid < r 

A(p .. mid) is sorted and 
subarray A(mid+1 .. r) is sorted 

• Output: single sorted array A(p .. r) 

• T(n) = O(n), 
where n=r-p+1 = # of elements being 
merged 

Merge Sort Analysis 
• The base case: when n =1, T(n)=O(1) 

n ≥ 2, time for merge sort steps: 
– Divide: Compute mid as the average of p, r 
⇒cost = O(1) 

– Conquer: Solve 2 subproblems, each of size n/ 2 

⇒cost = 2T(n/2) 
– Combine: merge to an n element subarray 
⇒ cost = O(n) 

T(n) = O(1) n = 1 

2T(n/2) + O(n) + O(1) n> 1 

– subarray 

• When  
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Solving Recurrences: 
Iteration 

19 

aT(n/b) + cn 
a(aT(n/b/b) + cn/b) + cn 
a2T(n/b2) + cna/b + cn 
a2T(n/b2

a2(aT(n/b2/b) + cn/b2) + cn(a/b + 1) 
a3T(n/b3) + cn(a2/b2) + cn(a/b + 1) 
a3T(n/b3) + cn(a2/b2 + a/b + 1) 
… 
akT(n/bk) + cn(ak-1/bk-1 + ak-2/bk-2 2/b2 + a/b + 1) 

• T(n) =  

) + cn(a/b + 1) 
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– kT(n/bk) + cn(ak-1/bk-1 + ... + a2/b2 + a/b + 
1) 

• b n 
k 

kT(1) + cn(ak-1/bk-1 + ... + a2/b2 + a/b + 1) 

= ak k-1/bk-1 + ... + a2/b2 + a/b + 1) 

= cak + cn(ak-1/bk-1 + ... + a2/b2 + a/b + 1) 

= cnak /bk + cn(ak-1/bk-1 + ... + a2/b2 + a/b + 1) 

= cn(ak/bk + ... + a2/b2 + a/b + 1) 
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b n 
k/bk + ... + a2/b2 + a/b + 1) 

= cn(logb n + 1) 
= O(n log n) 
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T(n) = O(1) n = 1 

2T(n/2) + O(n) + O(1) n> 1 

• So we have  
T(n) = a

For k = log
– n = b

– T(n)  = a

c + cn(a

• So with k = log
– T(n) = cn(a

• What if a = b? 
– T(n) = cn(k + 1) 
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The Master Method 

divide and conquer algorithm 

size n into a subproblems, each of size n/b 

divide the problem + combine solved 
subproblems) be described by the function 
f(n) 

provides a simple 
“cookbook

23 

Simplified Master Method 

• T(n) = aT(n/b) + cnk, 
where and b > 1 

( ) 
( ) 
( )  k 

k 

k 

k 

b 
k 

a 

ba 

ba 

ba 

nO 

nnO 

nO b 

< 

= 

> 

log 

log 

T(n) = 

• Given: a  
– An algorithm that divides the problem of 

– Let the cost of each stage (i.e., the work to 

– The  master method 
” solution 

a,c > 0 
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The Towers of Hanoi 

• Goal: Move stack of rings to another peg 

ring 

For simplicity, suppose there were just 3 disks 

the top disk from A to B. 

A B C 

The Towers of Hanoi 

– May only move 1 ring at a time 

– May never have larger ring on top of smaller 

Since we can only move one disk at a time, we move 



For simplicity, suppose there were just 3 disks 

We then move the top disk from A to C. 
A B C 

The Towers of Hanoi 

For simplicity, suppose there were just 3 disks 

We then move the top disk from B to C. 
A B C 

The Towers of Hanoi 



For simplicity, suppose there were just 3 disks 

We then move the top disk from A to B. 
A B C 

The Towers of Hanoi 

For simplicity, suppose there were just 3 disks 

We then move the top disk from C to A. 
A B C 

The Towers of Hanoi 



For simplicity, suppose there were just 3 disks 

We then move the top disk from C to B. 
A B C 

The Towers of Hanoi 

For simplicity, suppose there were just 3 disks 

We then move the top disk from A to B. 
A B C 

The Towers of Hanoi 



For simplicity, suppose there were just 3 disks 

and we’re done! 

disks increases... 

A B C 

The Towers of Hanoi 
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Æ 1 operation 
Æ 3 operations 
Æ 7 operations 
Æ 15 operations 

Cost: 2N-1 = O(2N) 

Æ 264 operations 

The Towers of Hanoi 

The problem gets more difficult as the number of 

• 1 ring  
• 2 rings  
• 3 rings  
• 4 rings  

• 64 rings  



34 

Towers of Hanoi 

• hanoi(from,to,other,number)
number disks 

from to needle to 
if number=1 then 

move the top disk from needle from 
to needle to 

else 
hanoi(from,other,to, number-1)
hanoi(from,to,other, 1)
hanoi(other,to, from, number-1)

end 
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Some math that is good to know 

b(xy) = logb by 

b(x/y) = logb by 

b bx 

b xa/logxb 
• a(b+c) = abac 

• abc = (ab)c 

• ab/ac = a(b-c) 

logab 

• bc = aclogab 

-- move the top 
-- from needle 

• log x + log
• log x – log
• log xa = alog
• log a = log

• b = a


