Introduction to Computers and Programming

Prof. I. K. Lundqvist

Lecture 20
May 52004

Proof by Truth Table

- Proposition $x \rightarrow y$ and $(\neg x) \vee y$ are logically equivalent

x	y	$x \rightarrow y$	$\neg x$	$(\neg x) \vee y$
0	0	1	1	1
0	1	1	1	1
1	0	0	0	0
1	1	1	0	1

Definitions

- Even

An integer n is even, iff $n=2 k$ for some integer k.

- n is even $\leftrightarrow \exists$ an integer k such that $n=2 k$

- Odd

An integer n is odd, iff $n=2 k+1$ for some integer k.

- n is odd $\leftrightarrow \exists$ an integer k such that $n=2 k+1$

- Divisible

An integer n is divisible by m, iff n and m are integers such that that there is an integer k such that $\mathrm{mk}=\mathrm{n}$

- n is divisible by $m \leftrightarrow \exists$ an integer k such that $m k=n$

The sum of two even integers is even

1. Rewrite as a condition (using if, then)
2. Write the hypothesis (beginning) and the conclusion (end)
3. For beginning: establish notation and unwind definitions
4. For end: unwind definitions backwards
5. ... and ... wait ...
The sum of two even integers is evenProof:
6. If x and y are even integers, then $x+y$ is even [conditional]
7. Let x and y be integers[hypothesis]
8. x is even, so $2 \mid x$[def. of even]
9. There is an integer, e.g., a, with $x=2 a$ [def. of divisible]
10. y is even, so 2|y[likewise for y]
11. There is an integer, e.g., b, with $y=2 b$
[as above]
12. $(x+y)=2(a+b)$ so take $c=(a+b)$ [add equations in 4 and 6]
13. There is an integer, e.g, c, with $(x+y)=2 c$ [def. of divisible]
14. $(x+y)$ is even, so $2 \mid(x+y)$ [def. of even]
15. $x+y$ is even[conclusion]

Direct Proof

- Show that a given statement is true by simple combination of existing theorems
- With or without mathematical manipulations
- Template for Proof of an if-then theorem
- First sentence(s) of proof is the hypothesis restated
- Last sentence(s) of proof is the conclusion of the theorem
- Unwind the definitions, working from both end and beginning of the proof
- Try to forge a 'link' between the two halves of your argument.

Direct Proof Example (1/2)

Given:

1. JaneB is in Course_16 or in Course_6
2. If JaneB does not like Unified, she is not in Course_16
3. If JaneB likes Unified, she is smart
4. JaneB is not in Course_6

Prove that JaneB is smart

Direct Proof Example (2/2)

1. $C_{-} 16 \vee C_{2} 6$	Given
2. $\cup \rightarrow \neg C_{-} 16$	Given
3. $U \rightarrow S$	Given
4. $\neg C_{-} 6$	Given

5. C_16 [1,4 Disjunctive Syllogism]
6. U [2,5 Modus Tollens]
7. S [3,6 Modus Ponens]

Concept Question

Given $\mathrm{p} \rightarrow \mathrm{q} ; \quad$ What is $\neg \mathrm{q} \rightarrow \neg \mathrm{p}$?

1. Negation

2. Implication

3. Contrapositive

4. I don't know

Proof of Implication

- Direct proof of $\mathrm{p} \rightarrow \mathrm{q}$
- the contrapositive, $\neg \mathrm{q} \rightarrow \neg \mathrm{p}$, is logically equivalent to $\mathrm{p} \rightarrow \mathrm{q}$
- We can prove $\neg \mathbf{q} \rightarrow \neg \mathbf{p}$ via the direct approach and then the original implication, $\mathrm{p} \rightarrow \mathrm{q}$, is proven.
- Indirect proof
- first assume that \mathbf{q} is false. Then use rules of inference, logical equivalences, and previously proved theorems to show that \mathbf{p} must also be false

Note that it may not be the case that q is false. If q is true then the implication holds. We assume that q is false so that we can explore this scenario and show that p must necessarily be false as well.

Ex: Give an indirect proof of "If $3 n+2$ is odd, then n is odd."
Recall again that this statement is implicitly a universal quantification " $\forall \mathrm{n}(3 \mathrm{n}+2$ is odd $\rightarrow \mathrm{n}$ is odd)."

Proof: We will prove the contrapositive, "If n is not odd, then $3 n+2$ is not odd. That is, "If n is even, then $3 n+2$ is even."
[step 1: Write assumptions] Let n be an even integer.
[step 2: Translate assumptions into a form we can work with]
Then $\mathrm{n}=2 \mathrm{k}$ for some integer k . [Definition of even]
[step 3: Work with it until it is in a form we need for concl.]
So $3 \mathrm{n}+2=3(2 \mathrm{k})+2=6 \mathrm{k}+2=2(3 \mathrm{k}+1)$.
[step 4: Realize that you're there and state your conclusion.]
So $3 n+2=2 * m$ where $m=(3 k+1)$, so $3 n+2$ is even.

Indirect Proofs
 $$
\mathrm{p} \rightarrow \mathrm{q} \equiv \neg \mathrm{q} \rightarrow \neg \mathrm{p} \quad \text { (the contrapositive) }
$$

- Prove the implication $\mathrm{p} \rightarrow \mathrm{q}$:
- Assume \neg q,
- Show that \neg p follows

Prove: "if $a+b \geq 15$, then $a \geq 8$ or $b \geq 8$ ". Where a, b are integers

$$
(a+b \geq 15) \rightarrow(a \geq 8) \vee(b \geq 8)
$$

- Assume: $(a<8) \wedge(b<8)$
- Proof: $\Rightarrow(a \leq 7) \wedge(b \leq 7)$
$\Rightarrow(a+b) \leq 14$
$\Rightarrow(a+b)<15$

Ex: Prove that if \mathbf{n} is an integer and \mathbf{n}^{2} is odd, then \mathbf{n} is odd.
Direct Approach: Let \mathbf{n} be an integer such that \mathbf{n}^{2} is odd. Then (by the definition of odd), $\mathbf{n}^{2}=\mathbf{2 k}+\mathbf{1}$ for some integer \mathbf{k}. Now we want to know something about n (namely that n is odd). It is difficult to go from information about n^{2} to information about n. It is much easier to go in the other direction. Let's try an indirect approach.

Indirect Approach: The original statement is $\forall \mathrm{n} \in \mathrm{Z}\left(\mathrm{n}^{2}\right.$ is odd $\rightarrow \mathrm{n}$ is odd). So the contrapositive is $\forall \mathrm{n} \in \mathrm{Z}$ (n is not odd $\rightarrow \mathrm{n}^{2}$ is not odd). Recalling that a number is not odd iff the number is even, we have: $\forall \mathrm{n} \in \mathrm{Z}$ (n is even $\rightarrow \mathrm{n}^{2}$ is even).

Let \mathbf{n} be an even integer. Then (by the definition of even), $\mathbf{n}=2 \mathbf{k}$ for some integer k. So $n^{2}=(2 k)^{2}=4 k^{2}=2\left(2 k^{2}\right)$. Now $2 k^{2}$ is an integer since k is and so we have expressed n^{2} as 2(some integer). So by the definition of even, \mathbf{n}^{2} is even.

Proof by Contradiction Theorem: $\sqrt{ } 2$ is an irrational number

Assume $\sqrt{ } 2$ is a rational number
Then $\sqrt{2}=a / b \quad \mid a, b$: relatively prime integers, and $b \neq 0$
$\rightarrow 2=a^{2} / b^{2}$
$\rightarrow 2 b^{2}=a^{2}$
$\rightarrow \mathrm{a}^{2}$ is even, $\therefore \mathrm{a}$ is even, $\mathrm{a}=2 \mathrm{k}$ for some k
$\rightarrow 2 \mathrm{~b}^{2}=(2 \mathrm{k})^{2}=4 \mathrm{k}^{2}$
$\rightarrow b^{2}=2 k^{2} \quad a, b$ are no longer relatively prime
$\rightarrow \mathrm{b}^{2}$ is even, $\therefore \mathrm{b}$ is even, $\mathrm{b}=2 \mathrm{j}$ for some j

Proof by Contradiction

- Assume, along with the hypotheses, the logical negation of the result we wish to prove, and then reach some kind of contradiction.
- To prove: "If P, then Q"
- assume P and $\neg Q$.
- the contradiction we arrive at could be some conclusion contradicting one of the assumptions
(or something obviously untrue like $1=0$)

Proof by Contradiction Example

Rainy days make gardens grow. Gardens don't grow if it is not hot. When it is cold outside, it rains.

1. $\mathrm{R} \rightarrow \mathrm{G}$
2. $\neg \mathrm{H} \rightarrow \neg \mathrm{G}$
3. $\neg \mathrm{H} \rightarrow \mathrm{R}$

- Prove that it is hot

4. $\neg \mathbf{H} \quad$ [Assumption]
5. R
[Modus Ponens 3,4]
6. G
[Modus Ponens 1,5]
7. $\neg G$
[Modus Ponens 2,4]

6,7 = Contradiction!

[Example]

Prove " if $5 \mathrm{n}+6$ is odd, then n is odd" by contradiction

Proof: Assume $5 \mathrm{n}+6$ is odd and n is even

- Then $\mathrm{n}=2 \mathrm{k}$ for some integer k
$-5 \mathrm{n}+6=5 * 2 \mathrm{k}+6=2 *(5 \mathrm{k}+3)$
- Since $5 k+3$ is an integer, $5 n+6$ is an even number, contradicting the assumption that it was odd
- Thus if $5 n+6$ is odd, then n is odd

Proof by Induction

A proof by Induction has five basic parts:

1. State the proposition
2. Verify the base case
3. Formulate the inductive hypothesis
4. Prove the inductive step
5. State the conclusion of the proof

Proof by Induction

Prove $\forall \mathrm{n} \geq 0 \mathrm{P}(\mathrm{n})$, where
$P(n)=$ "The sum of the first n positive odd integers is n^{2} "

$$
P(n)=\sum_{i=0}^{n-1}(2 i+1)=n^{2}
$$

Proof by Induction

- Basis Step: Show that the statement holds for the smallest case ($\mathrm{n}=0$)

$$
\sum_{i=0}^{-1}(2 i+1)=0=0^{2}
$$

- Induction Step: Show that if statement holds for n , then statement holds for $\mathrm{n}+1$.

$$
\begin{aligned}
& \sum_{i=0}^{n}(2 i+1)=\sum_{i=0}^{n-1}(2 i+1)+[2 n+1] \\
& =n^{2}+[2 n+1] \\
& =(n+1)^{2}
\end{aligned}
$$

Proof by Induction

Factorial(n) is the product of the first n positive integers

- Basis Step:

$$
F(0)=1
$$

- Induction Step:

$$
\begin{aligned}
& \text { Assume: } F(n-1)=(n-1) *(n-2)^{*} \ldots 2^{*} 1 \\
& \text { multiply both sides by } n, \\
& \begin{aligned}
n^{*} F(n-1) & =n^{*}(n-1)^{*} \ldots 3^{*} 2^{*} 1 \\
& =F(n)
\end{aligned}
\end{aligned}
$$

Rule of Inference	Tautology	Name		
p $\therefore \mathrm{p} \vee \mathrm{q}$	$\mathrm{p} \rightarrow(\mathrm{p} \vee \mathrm{q})$	Addition		
$\mathrm{p} \wedge \mathrm{q}$ $\therefore \mathrm{p}$	$(\mathrm{p} \wedge \mathrm{q}) \rightarrow \mathrm{p}$	Simplification		
p, q $\therefore \mathrm{p} \wedge \mathrm{q}$	$(\mathrm{p} \wedge \mathrm{q}) \rightarrow \mathrm{p} \wedge \mathrm{q}$	Conjunction		
$\mathrm{p}, \mathrm{p} \rightarrow \mathrm{q}$ $\therefore \mathrm{q}$	$(\mathrm{p} \wedge(\mathrm{p} \rightarrow \mathrm{q})) \rightarrow \mathrm{q}$	Modus Ponens		
$\neg \mathrm{q}, \mathrm{p} \rightarrow \mathrm{q}$ $\therefore \neg \mathrm{p}$	$(\neg \mathrm{q} \wedge(\mathrm{p} \rightarrow \mathrm{q})) \rightarrow \neg \mathrm{p}$	Modus Tollens		
$\mathrm{p} \rightarrow \mathrm{q}, \mathrm{q} \rightarrow \mathrm{r}$ $\therefore \mathrm{p} \rightarrow \mathrm{r}$	$((\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r}))$	Hypothetical Syllogism		
$\mathrm{p} \vee \mathrm{q}, \neg \mathrm{p}$ $\therefore \mathrm{q}$	$((\mathrm{p} \vee \mathrm{q}) \wedge \neg \mathrm{p}) \rightarrow \mathrm{q}$	Disjunctive Syllogism		
$\mathrm{p} \vee \mathrm{q}, \neg \mathrm{p} \vee \mathrm{r}$ $\therefore \mathrm{q} \vee \mathrm{r}$	$(\mathrm{p} \vee \mathrm{q}) \wedge(\neg \mathrm{p} \vee \mathrm{r})$	Resolution		
$\mathrm{q} \vee \mathrm{q} \vee \mathrm{r}$			\quad	
:---				

