Introduction to Computers and Programming

Prof. I. K. Lundqvist

Lecture 20 May 5 2004

Proof by Truth Table

Proposition
 x → y and (¬x) ∨ y are logically equivalent

х	У	х→у	−x	(¬x) ∨ y
0	0	1	1	1
0	1	1	1	1
1	0	0	0	0
1	1	1	0	1

Definitions

• Even

An integer *n* is even, iff n=2k for some integer *k*. - *n* is even $\leftrightarrow \exists$ an integer *k* such that n = 2k

• Odd

An integer *n* is odd, iff n=2k+1 for some integer *k*. - *n* is odd $\leftrightarrow \exists$ an integer *k* such that n=2k+1

• Divisible

An integer *n* is divisible by *m*, iff *n* and *m* are integers such that that there is an integer *k* such that mk=n

- *n* is divisible by $m \leftrightarrow \exists$ an integer *k* such that mk=n

The sum of two even integers is even

- 1. Rewrite as a condition (using if, then)
- 2. Write the hypothesis (beginning) and the conclusion (end)
 - 1. For beginning: establish notation and unwind definitions
 - 2. For end: unwind definitions backwards
- 3. ... and ... wait ...

The sum of two even integers is even Proof:

If x and y are even integers, then x+y is even [conditional] 1. 2. Let x and y be integers [hypothesis] [def. of even] 3. x is even, so 2|x|There is an integer, e.g., a, with x=2a[def. of divisible] 4. 5. y is even, so 2|y [likewise for y] There is an integer, e.g., b, with y=2b[as above] 6. 7. (x+y)=2(a+b) so take c = (a+b)[add equations in 4 and 6] [def. of divisible] There is an integer, e.g., c, with (x+y)=2c8. (x+y) is even, so 2|(x+y)[def. of even] 9. [conclusion] 10. x + y is even 5

Direct Proof

- Show that a given statement is true by simple combination of existing theorems

 With or without mathematical manipulations
- Template for Proof of an if-then theorem
 - First sentence(s) of proof is the hypothesis restated
 - Last sentence(s) of proof is the conclusion of the theorem
 - Unwind the definitions, working from both end and beginning of the proof
 - Try to forge a 'link' between the two halves of your argument.

Direct Proof Example (1/2)

Given:

1. JaneB is in Course_16 or in Course_6

- 2. If JaneB does not like Unified, she is not in Course_16
- 3. If JaneB likes Unified, she is smart
- 4. JaneB is not in Course_6

Prove that JaneB is smart

Direct Proof Example (2/2)

1. 2. 3. 4.	$C_16 \lor C_6$ $\neg U \rightarrow \neg C_1$ $U \rightarrow S$ $\neg C_6$	Given Given Given Given	
5.	C_16	[1,4 Disjund	tive Syllogism]
6.	U	[2,5 Modus	Tollens]
7.	S	[3,6 Modus	Ponens]

Concept QuestionGiven $p \rightarrow q$;What is $\neg q \rightarrow \neg p$?

- 1. Negation
- 2. Implication
- 3. Contrapositive
- 4. I don't know

Proof of Implication

- Direct proof of $p \rightarrow q$
 - the contrapositive, $\neg q \rightarrow \neg p$, is logically equivalent to $p \rightarrow q$
 - We can **prove** $\neg q \rightarrow \neg p$ via the **direct approach** and then the original implication, $p \rightarrow q$, is proven.
- Indirect proof
 - first assume that q is false. Then use rules of inference, logical equivalences, and previously proved theorems to show that p must also be false

Note that it may not be the case that q is false. If q is true then the implication holds. We assume that q is false so that we can explore this scenario and show that p must necessarily be false as well.

Ex: Give an indirect proof of "If 3n + 2 is odd, then n is odd."

Recall again that this statement is implicitly a universal quantification " $\forall n(3n + 2 \text{ is odd} \rightarrow n \text{ is odd})$."

Proof: We will prove the **contrapositive**, "If n is not odd, then 3n + 2 is not odd. That is, "If n is even, then 3n + 2 is even."

[step 1: Write assumptions] Let n be an even integer.

[step 2: Translate assumptions into a form we can work with]

Then n = 2k for some integer k. [Definition of even]

[step 3: Work with it until it is in a form we need for concl.]

So 3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1).

[step 4: Realize that you're there and state your conclusion.]

11

So 3n + 2 = 2*m where m = (3k + 1), so 3n + 2 is even.

Indirect Proofs $p \rightarrow q \equiv \neg q \rightarrow \neg p \quad (\text{the contrapositive})$ • Prove the implication $p \rightarrow q$: $- \text{Assume } \neg q,$ $- \text{Show that } \neg p \text{ follows}$ Prove: "if $a + b \ge 15$, then $a \ge 8 \text{ or } b \ge 8$ ". Where a, b are integers $(a + b \ge 15) \rightarrow (a \ge 8) \lor (b \ge 8)$ • Assume: $(a < 8) \land (b < 8)$ • Proof: $\Rightarrow (a \le 7) \land (b \le 7)$ $\Rightarrow (a + b) \le 14$ $\Rightarrow (a + b) \le 15$

Ex: Prove that if n is an integer and n^2 is odd, then n is odd.

Direct Approach: Let **n** be an integer such that n^2 is odd. Then (by the definition of odd), $n^2 = 2k + 1$ for some integer k. Now we want to know something about n (namely that *n* is odd). It is difficult to go from *information about* n^2 *to information about* n. It is much easier to go in the other direction. Let's try an indirect approach.

Indirect Approach: The original statement is $\forall n \in \mathbb{Z}(n^2 \text{ is odd} \rightarrow n \text{ is odd})$. So the **contrapositive** is $\forall n \in \mathbb{Z}(n \text{ is not odd} \rightarrow n^2 \text{ is not} \text{ odd})$. Recalling that a number is not odd iff the number is even, we have: $\forall n \in \mathbb{Z}(n \text{ is even} \rightarrow n^2 \text{ is even})$.

Let **n** be an even integer. Then (by the definition of even), $\mathbf{n} = 2\mathbf{k}$ for some integer k. So $\mathbf{n}^2 = (2\mathbf{k})^2 = 4\mathbf{k}^2 = 2(2\mathbf{k}^2)$. Now $2\mathbf{k}^2$ is an integer since k is and so we have expressed \mathbf{n}^2 as 2(some integer). So by the definition of even, \mathbf{n}^2 is even.

Proof by Contradiction

- Assume, along with the hypotheses, the **logical negation** of the result we wish to prove, and then reach some kind of contradiction.
- To prove: "If P, then Q"
 - assume P and $\neg Q$.
 - the contradiction we arrive at could be some conclusion contradicting one of the assumptions
 (or something obviously untrue like 1 = 0)

Proof by Contradiction Example

Rainy days make gardens grow. Gardens don't grow if it is not hot. When it is cold outside, it rains.

- 1. $R \rightarrow G$ 2. $\neg H \rightarrow \neg G$ 3. $\neg H \rightarrow R$
- Prove that it is hot

4. ⊣ H	[Assumption]
5. R	[Modus Ponens 3,4]
6. G	[Modus Ponens 1,5]
7. ¬G	[Modus Ponens 2,4]

6,7 = **Contradiction!**

[Example]

Prove " if 5n+6 is odd, then n is odd" by contradiction

Proof: Assume 5n+6 is odd and n is even

- Then n = 2k for some integer k
- -5n+6 = 5*2k+6 = 2*(5k+3)
- Since 5k+3 is an integer, 5n+6 is an even number, contradicting the assumption that it was odd
- Thus if 5n+6 is odd, then n is odd

Proof by Induction

A proof by Induction has five basic parts:

- 1. State the proposition
- 2. Verify the base case
- 3. Formulate the inductive hypothesis
- 4. Prove the inductive step
- 5. State the conclusion of the proof

Proof by Induction

Prove $\forall n \ge 0 P(n)$, where

P(n) = "The sum of the first *n* positive odd integers is n^{2} "

Proof by Induction

• **Basis Step**: Show that the statement holds for the smallest case (n = 0)

$$\sum_{i=0}^{-1} (2i+1) = 0 = 0^2$$

• **Induction Step**: Show that if statement holds for *n*, then statement holds for *n*+1.

$$\sum_{i=0}^{n} (2i+1) = \sum_{i=0}^{n-1} (2i+1) + [2n+1]$$
$$= n^{2} + [2n+1]$$
$$= (n+1)^{2}$$

Proof by Induction

Factorial(n) is the product of the first n positive integers

Basis Step:

F(0) = 1

Induction Step:

Assume: F(n-1) = (n-1)*(n-2)*...*2*1multiply both sides by n, n*F(n-1) = n*(n-1)*...*3*2*1= F(n)

21

Rule of Inference	Tautology	Name
р	$p \rightarrow (p \lor q)$	Addition
$\therefore p \lor q$		
$p \wedge q$	$(p \land q) \rightarrow p$	Simplification
∴ p		
p, q	$(p \land q) \rightarrow p \land q$	Conjunction
$\therefore p \land q$		
$p, p \rightarrow q$	$(p \land (p \to q)) \to q$	Modus Ponens
∴ q		
$\neg q, p \rightarrow q$	$(\neg q \land (p \rightarrow q)) \rightarrow \neg p$	Modus Tollens
$\therefore \neg p$		
$p \rightarrow q, q \rightarrow r$	$((p \to q) \land (q \to r))$	Hypothetical
$\therefore p \rightarrow r$	\rightarrow (p \rightarrow r)	Syllogism
$p \lor q, \neg p$	$((p \lor q) \land \neg p) \to q$	Disjunctive
∴ q		Syllogism
$p \lor q, \neg p \lor r$	$(p \lor q) \land (\neg p \lor r)$	Resolution
$\therefore q \lor r$	$\rightarrow q \lor r$	