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Terminology 

that is either true or false (but not both) 

• Conjunction: p ∧ q, ∧ corresponds to and 

• Disjunction: p ∨ q, ∨ corresponds to or 

• Negation: ¬p, ¬ corresponds to not 

May 4 2004 

• A proposition is a declarative statement 
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CQ 1 

1. True, False 

2. True, True 

3. False, False 

4. I don’t know 

P = Everyone loves ice cream; Q = X loves ice cream 

P is a proposition, Q is a proposition 
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Implication 

• Implication: p → q, → corresponds to implies 

“if it rains, then it is cloudy” 

p = it rains 

q = it is cloudy 

p → q 
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Rule of Inference Tautology Name 
p 
∴ p ∨ q 

p → (p ∨ q) Addition 

p ∧ q (p ∧ q) → p Simplification 
∴ p 
p, q (p ∧ q) → p ∧ q Conjunction 
∴ p ∧ q 
p, p → q 
∴ q 

(p ∧ (p → q)) → q Modus Ponens 

¬q, p → q 
∴ ¬p 

(¬q ∧ (p → q)) → ¬p Modus Tollens 

p → q, q → r 
∴ p → r 

((p → q) ∧ (q → r)) 
→ (p → r) 

Hypothetical 
Syllogism 

p ∨ q, ¬p 
∴ q 

((p ∨ q) ∧ ¬p) → q Disjunctive 
Syllogism 

p ∨ q, ¬p ∨ r 
∴ q ∨ r 

(p ∨ q) ∧ (¬p ∨ r) 
→ q ∨ r 

Resolution 
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By the rule of resolution, we know that “It is raining today or it is 
windy today.” 

Ex: Consider these statements “If I buy something, then I go to the 
store If I go to the store, then I drive my car
statements are true, then by hypothetical syllogism we can conclude 
that “If I buy something, then I drive my car.” 

Ex: Consider the statements “It is raining today or it is snowing 
today It is not snowing today or it is windy today
know both of these statements are true then what can we conclude? 

.” and “ .” If these two 

.” and “ .” If we 
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Ex: Show that 
[(¬p ∧ q) ∧ (r → p) ∧ (¬r → s) ∧ (s → t)] → t 

is a true statement. 

Proof: 
We assume the hypotheses (¬p ∧ q), (r → p), (¬r → s), and (s → t) 

1. By (¬p ∧ q) we know ¬p [simplification] 

2. By (r → p) we know ¬p →¬r [contrapositive] 

3. By 2 and (¬r → s) we know (¬p → s) [hypothetical syllogism] 

4. By 3 and (s → t) we know (¬p → t) [hypothetical syllogism] 

5. By 1 and 4 we know t [modus ponens] 
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Ex: A detective has interviewed four witnesses to a crime. From 

• butler is telling the truth, then so is the cook; 

• cook and the gardener can not both be telling the truth; 

• gardener and the handyman are not both lying; 

• handyman is telling the truth then the cook is lying. 

For each of the four witnesses, can the detective determine whether 
that person is telling the truth or lying? 

→ c 

(2) ¬(c ∧ g) or ¬c ∨ ¬g 

(3) ¬(¬g ∧ ¬h) or g ∨ h 

→¬c 

the stories of the witnesses the detective has concluded that if 

the 

the 

the 

and if the 

(1) b 

(4) h 
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→ c ¬b ∨ c 

(2) ¬(c ∧ g) or ¬c ∨ ¬g 

(3) ¬(¬g ∧ ¬h) or g ∨ h 

→¬c ¬h ∨ ¬c 

By combining (1) and (2) we get (5) ¬b ∨ ¬g 

By combining (1) and (4) we get (6) ¬b ∨ ¬h 

By combining (2) and (3) we get (7) ¬c ∨ h 

By combining (3) and (4) we get (8) g ∨ ¬c 
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(1) ¬b ∨ c (5) ¬b ∨ ¬g 

(2) ¬c ∨ ¬g (6) ¬b ∨ ¬h 

∨ h (7) ¬c ∨ h 

(4) ¬h ∨ ¬c (8) g ∨ ¬c 

By combining (1) and (7) we get (9) ¬b ∨ h 

By combining (1) and (8) we get (10) ¬b ∨ g 

By combining (2) and (8) we get (11) ¬c ∨ ¬c ≡ ¬c 

By combining (3) and (5) we get (9) ¬b ∨ h 

By combining (3) and (6) we get (10) ¬b ∨ g 

By combining (4) and (7) we get (11) ¬c ∨ ¬c ≡ ¬c 

By combining (5) and (8) we get (12) ¬b ∨ ¬c 

By combining (6) and (7) we get (12) ¬b ∨ ¬c 

(1) b or  

(4) h or  

(3) g 
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(1) ¬b ∨ c (5) ¬b ∨ ¬g (9) ¬b ∨ h 

(2) ¬c ∨ ¬g (6) ¬b ∨ ¬h (10) ¬b ∨ g 

∨ h (7) ¬c ∨ h (11) ¬c 

(4) ¬h ∨ ¬c (8) g ∨ ¬c (12) ¬b ∨ ¬c 

By combining (9) and (4) we get (12) ¬b ∨ ¬c 

By combining (9) and (6) we get (13) ¬b ∨ ¬b ≡ ¬b 

By combining (10) and (2) we get (12) ¬b ∨ ¬c 

By combining (10) and (5) we get (13) ¬b ∨ ¬b ≡ ¬b 

By combining (11) and (1) we get (13) ¬b 

By combining (12) and (1) we get (13) ¬b ∨ ¬b ≡ ¬b 

We can see that (13) won’t combine with anything so we’re done. 
¬b and ¬c. 
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Predicate Logic 

atomic 
sentences which are made up of: 
– Constants, or objects, such as “Butterflies” 
– Variables, such as X 
– Predicate such as “eats”, “likes”, “bigger than” 

quantifiers which allow 
general statements such as All butterflies 
are colorful, or There are some elephants 
that like mangoes 

(3) g 

We have come to the same conclusions as before 

• Predicate logic: composed of 

• It also uses 
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Universal Quantifiers 

Let P(x) be a predicate on some universe of discourse. 

The universal quantifier of P(x) is the proposition: 
“P(x) is true for all x in the universe of discourse” 

Formally: ∀x P(x) is read as “for all x, P(x)” 

• ∀x P(x) is TRUE if P(x) is true for every single x 

• ∀x P(x) is FALSE if there is an x for which P(x) is false 
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Finite Universes 

In the special case that the universe of discourse,
U = {x1, x2, x3, …, xn} 

∀x P(x) 

P(x1) ∧ P(x2) ∧ … ∧ P(xn) 

( ∀x Work_Hard(x) → get_an_A(x) ) 
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Existential Quantifiers 

Let P(x) be a predicate on some universe of discourse U. 

The existential quantifier of P(x) is the proposition: 
“P(x) is true if it is true for at least one x in the universe of 
discourse” 

Formally, ∃x P(x): is read as “for some x, P(x)” 

• ∃x P(x) is FALSE if P(x) is false for every single x 

• ∃x P(x) is TRUE if there is an x for which P(x) is true 
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Finite Universes 

In the special case that the universe of 
discourse, U, is finite, (U = {x1, x2, x3, 
…, xn}) 

∃x P(x) 

P(x1) ∨ P(x2) ∨ … ∨ P(xn) 

∃x x is awake 
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Lions and Coffee 

Given U = all creatures: 
– L(x) = “x is a lion.” 
– F(x) = “x is fierce.” 
– C(x) = “x drinks coffee.” 

All lions are fierce. 

Some lions don’t drink coffee. 

Some fierce creatures don’t drink coffee. 

∀x (L(x) → F(x)) 

∃x (L(x) ∧ ¬C(x)) 

∃x (F(x) ∧ ¬C(x)) 
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Butterflies and Nectar 

B(x) = “x is a butterfly.” 
L(x) = “x is a large butterfly.” 
N(x) = “x lives on nectar.” 
R(x) = “x is richly covered.” 

All butterflies are richly colored. 

No large butterflies live on nectar. 

Insects that do not live on nectar are dully colored 

∀x (B(x) → R(x)) 

¬∃x (L(x) ∧ N(x)) 
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CQ 2 

1. ∀x (¬N(x) → ¬R(x)) 

2. ∀x (N(x) → R(x)) 

3. ∀x (¬N(x) → R(x)) 

Insects that do not live on nectar are dully colored 
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Negating Quantifiers 

• ¬∀x P(x) is the same as ∃x ¬P(x) 

• ¬∃x P(x) is the same as ∀x ¬P(x) 

Rule of Thumb: to negate a quantifier, 
move negation to the right, changing 
quantifiers as you go 

4. Don’t know 
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Quantifier Negation 

→= ∀x (L(x) → ¬N(x)) 

DeMorgan’s= ∀x (¬L(x) ∨ ¬N(x)) 

Negation rule= ∀x ¬(L(x) ∧ N(x))¬∃x (L(x) ∧ N(x)) 

No large insects live on nectar 
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Proofs 

• A  theorem is a statement that can be 
shown to be true 

• A  proof is the means of doing so 

Axioms, postulates, hypotheses, previously proven theorems 

Proof 

Subst for 

Rules of Inference 


