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Testing

• Goals of Testing 

• Classification 
– Test Coverage 
– Test Technique 

• Blackbox vs Whitebox 

• Real bugs and software bugs 
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Testing

•
– Testing is a process of executing a software program 

with the intention of finding a error 
– is one that has a high probability of 

finding an as-yet undiscovered error 
– test is one that uncovers an as-yet 

undiscovered error” 
(Glen Myers,“The art of software testing”)

•
– systematically uncover different 

classes of errors 
–
–
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Test Techniques 1 

used to measure the adequacy of a set 
of test cases: 

– Coverage-based testing 

coverage of the product to be tested 

– Fault-based testing 

the adequacy 

– Error-based testing 

of the typical errors that people make 

Primary objectives 

A good test case 

A successful 

Secondary Objectives 
Design tests that 

Do so with a minimum of time and effort 
Provide reliable indications of software quality 

• Classified according to the criterion 

• Testing requirements are specified in terms of the 

• Fault detecting ability of the test set determines 

• Focus on error-prone points, based on knowledge 
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(Definitions)
• Error

result

• Fault

fault. A fault thus is the manifestion of an error 

• Failure

are
failures
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PRS

Exception handling is used to capture: 

– Error is a human action that produces an incorrect 

– Consequence of an error is software containing a 

– If encountered, a fault may result in a failure 

• What we observe during testing 

1. Errors 

2. Faults 

3. Failures 

4. I am still sleeping … 
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Test Techniques 2 

source of information used to derive test 
cases:

– White (glass) box testing
structural or program-based testing 

– Black box testing
functional
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Black-Box Testing 

program is considered as a ‘black-box’ 

the

software process 

• Or, classify test techniques based on the 

• Also called 

• Also called or specification-based testing 

• An approach to testing where the 

• The program test cases are based on 
system specification 

• Test planning can begin early in the 



Inputs causing
anomalous
behaviour

Outputs which reveal
the presence of
defects
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Black-Box Testing 

I
e

Oe

System

Inputs causing 

behavior

Outputs which reveal 

I

O
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Equivalence Partitioning 

into different classes where all members 
of a class are related 

partition where the program behaves in 
an equivalent way for each class member 

partition

Input test data 

Output test results 

anomalous 

the presence of defects 

• Input data and output results often fall 

• Each of these classes is an equivalence 

• Test cases should be chosen from each 
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Equivalence Partitioning 

12

‘equivalence sets’ 
5-digit integer between 10,000 and 

99,999 equivalence partitions are 

sets

Equivalence Partitioning 
• Partition system inputs and outputs into 

– If input is a 

• <10,000 
• 10,000-99,999 
• >99,999 

• Choose test cases at the boundary of these 

– 00000, 09999, 10000, 99999, 100000 

System

Outputs

Invalid inputsInvalid inputsInvalid inputs Valid inputsValid inputs

System

outputs

invalid inputs valid inputs



Input values

Number of input values
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Equivalence Partitions 

Less than 10000 

9999
10000 50000 

100000
99999

Less than 4 

3
4 7 

11
10

Input values 

Input values 
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Search Routine Specification 
procedure Search (Key : Elem;

T : Elem_Array;
Found : in out Boolean;
L : in out Elem_Index)

Pre-Condition

Post-Condition

( Found and T(L) = Key) 
or

( not Found and
not

Between 10000 and 99999 More than 99999 

Between 4 and 10 More than 10 

-- the array has at least one element
T’First <= T’Last 

-- the element is found and is referenced by L 

-- the element is not in the array 

(Exists I, T’First >= I <= T’Last, T (I) = Key )) 



15

Testing Guidelines (Sequences) 

have only a single value 

different tests 

and last elements of the sequence are 
accessed

16

(T) ( ) ( ) 
17 17

0
17
45
23
25

• Test software with sequences which 

• Use sequences of different sizes in 

• Derive tests so that the first, middle 

• Test with sequences of zero length  

Array Element 
Single value In sequence 
Single value Not in sequence 
More than 1 value First element in sequence 
More than 1 value Last element in sequence 
More than 1 value Middle element in sequence 
More than 1 value Not in sequence 

Input sequence Key Key Output Found, L
true, 1 

17 false, ?? 
17, 29, 21, 23 true, 1 
41, 18, 9, 31, 30, 16, 45 true, 7 
17, 18, 21, 23, 29, 41, 38 true, 4 
21, 23, 29, 33, 38 false, ?? 

Search Routine - Input Partitions 
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program structure. Knowledge of the 
program is used to identify additional test 
cases

statements

White Box Testing 

Component
code outputs
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White Box Testing 

• independent
paths within a module at 
least once 

• logical
decisions on their true 
and false sides 

• loops at their 
boundaries and within their 
operational bounds 

•
structures to assure their 
validity

• Also called Structural testing 
• Derivation of test cases according to 

• Objective is to exercise all program 

Test 

Test data 

Derives Tests 

Exercise all 

Exercise all 

Exercise all 

Exercise all internal data 
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Why White Box Testing 

–
–

inversely proportional to a path’s execution 
probability

be executed; in fact, reality is often counter 
intuitive

that untested paths will contain some 

20

E

S

loop < 20x 

Exhaustive Testing 

There are 520=1014

possible paths 

If we execute one test 
per millisecond, it 
would take 3,170
years to test this 
program

• Why not simply check that 
Requirements are fulfilled? 
Interfaces are available and working? 

• Reasons for white-box testing: 
– logic errors and incorrect assumptions are 

– we often believe that a path is not likely to 

– typographical errors are random; it’s likely 



22

Selective Testing 
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Basis Set 

• of execution paths = set of paths 
that will execute all statements and all 
conditions in a program at least once 

• defines the number
of independent paths in the basis set 

• Goal: Define test cases for basis set 

• Basis path testing 
• Condition testing 
• Loop testing 
• Dataflow testing 

loop < = 20x 

Basis set 

Cyclomatic complexity 

• Basis set is not unique 



24

Flow Graph Notation 
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Basis Path Testing 

•
measure
–

+1

+1 (uses 
flow-graph notation) 

–

•
execution paths 
–

tests that must be executed to 
guarantee coverage of all programs 

Derive a logical complexity 

Cyclomatic complexity CV(G) 
• Number of  simple decisions 

(compound decisions have to be split) 
• Number of  enclosed areas

In this case, CV(G) = 4 

Use CV(G) to define a basis set of 

CV(G) provides an lower bound of 
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Graph Cyclomatic Number V(G) = e - n + 1
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modules

CV(G)
modules in this range are 
more error prone 

A number of industry studies have indicated 
that the higher CV(G), the higher the 
probability of errors. 
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Basis Path Testing 

CV(G) = 4 

There are four paths 

Path 1: 1,2,3,6,7,8 

Path 2: 1,2,3,5,7,8 

Path 3: 1,2,4,7,8 

Path 4: 1,2,4,7,2…7,8 

We derive test cases to 
exercise these paths 

Cyclomatic Complexity 
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Selective Testing 
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Condition Testing 

program module 

– Simple condition:

– Compound condition:

((a=b) and (c>d)) 

• Basis path testing 
• Condition testing 
• Loop testing 
• Dataflow testing 

• Exercises each logical condition in a 

• Possible conditions: 

• Boolean variable (T or F) 
• Relational expression (a<b) 

• Composed of several simple conditions 
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Condition Testing Methods 

• Branch testing:

exercised at least once 

• Domain testing:
a<b:

• 2n tests required 
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Selective Testing 

– Each branch of each condition needs to be 

– Relational expression  
• 3 tests: a<b, a=b, a>b 

– Boolean expression with n variables 

• Basis path testing 
• Condition testing 
• Loop testing 
• Dataflow testing 



Loop Testing 

• Loops are the cornerstone of every program 

• Loops can lead to non-terminating programs 

• Loop testing focuses exclusively on the 
validity of loop constructs 

while X < 20 loop 

do something 

end loop; 
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Loop Testing 

simple nested concatenated unstructured
loop loops loops loops

33
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n

n

Testing Simple Loops 

•
loops
– skip the loop entirely 

through the loop 
– through the loop 
– m passes through the loop m < n
– (n-1), n, and (n+1) passes 

through the loop 

n =
passes
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Testing Nested Loops 

loops to minimum values 

range or excluded values 

nested loops to typical values 

Minimum conditions - simple 

– only  one pass 
two passes 

maximum number of allowable 

• Just extending simple loop testing 
– number of tests grows geometrically 

• Reduce the number of tests: 
– start at the innermost loop; set all other 

– conduct simple loop test; add out-of-

– work outwards while keeping inner 

– continue until all loops have been tested 
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Testing Concatenated Loops 

other:

37

Bad Programming! 

Testing Unstructured Loops 

• Loops are independent of each 

– Use simple-loop approach 

• Loops depend on each other: 
– Use nested-loop approach 
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Selective Testing 

39

Dataflow Testing 

•
pieces of code with a single 
entry/exit point 

•
variables are set/used 

•

• Basis path testing 
• Condition testing 
• Loop testing 
• Dataflow testing 

Partition the program into 

For each piece find which 

Various covering criteria: 
– For all set-use pairs 
– For all set to some use 


