
Introduction to Computers and
Programming

Prof. I. K. Lundqvist

Lecture 13
April 16 2004

2

Testing

• Goals of Testing

• Classification
– Test Coverage
– Test Technique

• Blackbox vs Whitebox

• Real bugs and software bugs

3

Testing

•
– Testing is a process of executing a software program

with the intention of finding a error
– is one that has a high probability of

finding an as-yet undiscovered error
– test is one that uncovers an as-yet

undiscovered error”
(Glen Myers,“The art of software testing”)

•
– systematically uncover different

classes of errors
–
–

4

Test Techniques 1

used to measure the adequacy of a set
of test cases:

– Coverage-based testing

coverage of the product to be tested

– Fault-based testing

the adequacy

– Error-based testing

of the typical errors that people make

Primary objectives

A good test case

A successful

Secondary Objectives
Design tests that

Do so with a minimum of time and effort
Provide reliable indications of software quality

• Classified according to the criterion

• Testing requirements are specified in terms of the

• Fault detecting ability of the test set determines

• Focus on error-prone points, based on knowledge

5

(Definitions)
• Error

result

• Fault

fault. A fault thus is the manifestion of an error

• Failure

are
failures

6

PRS

Exception handling is used to capture:

– Error is a human action that produces an incorrect

– Consequence of an error is software containing a

– If encountered, a fault may result in a failure

• What we observe during testing

1. Errors

2. Faults

3. Failures

4. I am still sleeping …

7

Test Techniques 2

source of information used to derive test
cases:

– White (glass) box testing
structural or program-based testing

– Black box testing
functional

8

Black-Box Testing

program is considered as a ‘black-box’

the

software process

• Or, classify test techniques based on the

• Also called

• Also called or specification-based testing

• An approach to testing where the

• The program test cases are based on
system specification

• Test planning can begin early in the

Inputs causing
anomalous
behaviour

Outputs which reveal
the presence of
defects

9

Black-Box Testing

I
e

Oe

System

Inputs causing

behavior

Outputs which reveal

I

O

10

Equivalence Partitioning

into different classes where all members
of a class are related

partition where the program behaves in
an equivalent way for each class member

partition

Input test data

Output test results

anomalous

the presence of defects

• Input data and output results often fall

• Each of these classes is an equivalence

• Test cases should be chosen from each

11

Equivalence Partitioning

12

‘equivalence sets’
5-digit integer between 10,000 and

99,999 equivalence partitions are

sets

Equivalence Partitioning
• Partition system inputs and outputs into

– If input is a

• <10,000
• 10,000-99,999
• >99,999

• Choose test cases at the boundary of these

– 00000, 09999, 10000, 99999, 100000

System

Outputs

Invalid inputsInvalid inputsInvalid inputs Valid inputsValid inputs

System

outputs

invalid inputs valid inputs

Input values

Number of input values

13

Equivalence Partitions

Less than 10000

9999
10000 50000

100000
99999

Less than 4

3
4 7

11
10

Input values

Input values

14

Search Routine Specification
procedure Search (Key : Elem;

T : Elem_Array;
Found : in out Boolean;
L : in out Elem_Index)

Pre-Condition

Post-Condition

(Found and T(L) = Key)
or

(not Found and
not

Between 10000 and 99999 More than 99999

Between 4 and 10 More than 10

-- the array has at least one element
T’First <= T’Last

-- the element is found and is referenced by L

-- the element is not in the array

(Exists I, T’First >= I <= T’Last, T (I) = Key))

15

Testing Guidelines (Sequences)

have only a single value

different tests

and last elements of the sequence are
accessed

16

(T) () ()
17 17

0
17
45
23
25

• Test software with sequences which

• Use sequences of different sizes in

• Derive tests so that the first, middle

• Test with sequences of zero length

Array Element
Single value In sequence
Single value Not in sequence
More than 1 value First element in sequence
More than 1 value Last element in sequence
More than 1 value Middle element in sequence
More than 1 value Not in sequence

Input sequence Key Key Output Found, L
true, 1

17 false, ??
17, 29, 21, 23 true, 1
41, 18, 9, 31, 30, 16, 45 true, 7
17, 18, 21, 23, 29, 41, 38 true, 4
21, 23, 29, 33, 38 false, ??

Search Routine - Input Partitions

17

program structure. Knowledge of the
program is used to identify additional test
cases

statements

White Box Testing

Component
code outputs

18

White Box Testing

• independent
paths within a module at
least once

• logical
decisions on their true
and false sides

• loops at their
boundaries and within their
operational bounds

•
structures to assure their
validity

• Also called Structural testing
• Derivation of test cases according to

• Objective is to exercise all program

Test

Test data

Derives Tests

Exercise all

Exercise all

Exercise all

Exercise all internal data

19

Why White Box Testing

–
–

inversely proportional to a path’s execution
probability

be executed; in fact, reality is often counter
intuitive

that untested paths will contain some

20

E

S

loop < 20x

Exhaustive Testing

There are 520=1014

possible paths

If we execute one test
per millisecond, it
would take 3,170
years to test this
program

• Why not simply check that
Requirements are fulfilled?
Interfaces are available and working?

• Reasons for white-box testing:
– logic errors and incorrect assumptions are

– we often believe that a path is not likely to

– typographical errors are random; it’s likely

22

Selective Testing

23

Basis Set

• of execution paths = set of paths
that will execute all statements and all
conditions in a program at least once

• defines the number
of independent paths in the basis set

• Goal: Define test cases for basis set

• Basis path testing
• Condition testing
• Loop testing
• Dataflow testing

loop < = 20x

Basis set

Cyclomatic complexity

• Basis set is not unique

24

Flow Graph Notation

25

Basis Path Testing

•
measure
–

+1

+1 (uses
flow-graph notation)

–

•
execution paths
–

tests that must be executed to
guarantee coverage of all programs

Derive a logical complexity

Cyclomatic complexity CV(G)
• Number of simple decisions

(compound decisions have to be split)
• Number of enclosed areas

In this case, CV(G) = 4

Use CV(G) to define a basis set of

CV(G) provides an lower bound of

1

2

6

3

7

4

8
5

11

9
10

4,56

9

8

2,3

1

7

10

11

Graph Cyclomatic Number V(G) = e - n + 1

Cyclomatic Complexity CV(G) = V(G) + 1

R
2

R
3 R

1

R
4

R
i

m Node

Edge

Region

26

modules

CV(G)
modules in this range are
more error prone

A number of industry studies have indicated
that the higher CV(G), the higher the
probability of errors.

27

1

2

4

7

8

3

65

Basis Path Testing

CV(G) = 4

There are four paths

Path 1: 1,2,3,6,7,8

Path 2: 1,2,3,5,7,8

Path 3: 1,2,4,7,8

Path 4: 1,2,4,7,2…7,8

We derive test cases to
exercise these paths

Cyclomatic Complexity

28

Selective Testing

29

Condition Testing

program module

– Simple condition:

– Compound condition:

((a=b) and (c>d))

• Basis path testing
• Condition testing
• Loop testing
• Dataflow testing

• Exercises each logical condition in a

• Possible conditions:

• Boolean variable (T or F)
• Relational expression (a<b)

• Composed of several simple conditions

30

Condition Testing Methods

• Branch testing:

exercised at least once

• Domain testing:
a<b:

• 2n tests required

31

Selective Testing

– Each branch of each condition needs to be

– Relational expression
• 3 tests: a<b, a=b, a>b

– Boolean expression with n variables

• Basis path testing
• Condition testing
• Loop testing
• Dataflow testing

Loop Testing

• Loops are the cornerstone of every program

• Loops can lead to non-terminating programs

• Loop testing focuses exclusively on the
validity of loop constructs

while X < 20 loop

do something

end loop;

32

Loop Testing

simple nested concatenated unstructured
loop loops loops loops

33

34

n

n

Testing Simple Loops

•
loops
– skip the loop entirely

through the loop
– through the loop
– m passes through the loop m < n
– (n-1), n, and (n+1) passes

through the loop

n =
passes

35

Testing Nested Loops

loops to minimum values

range or excluded values

nested loops to typical values

Minimum conditions - simple

– only one pass
two passes

maximum number of allowable

• Just extending simple loop testing
– number of tests grows geometrically

• Reduce the number of tests:
– start at the innermost loop; set all other

– conduct simple loop test; add out-of-

– work outwards while keeping inner

– continue until all loops have been tested

36

Testing Concatenated Loops

other:

37

Bad Programming!

Testing Unstructured Loops

• Loops are independent of each

– Use simple-loop approach

• Loops depend on each other:
– Use nested-loop approach

38

Selective Testing

39

Dataflow Testing

•
pieces of code with a single
entry/exit point

•
variables are set/used

•

• Basis path testing
• Condition testing
• Loop testing
• Dataflow testing

Partition the program into

For each piece find which

Various covering criteria:
– For all set-use pairs
– For all set to some use

