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Functional Genomics

ð Goal: Elucidate functions and interactions of genes.

ð Method: Gene expression is used to identify function.

ð Tools: Characteristic tools of functional genomics:
ü High throughput platforms.
ü Computational and statistical data analysis.

ð Style: The intellectual style is different:
ü Research is no longer hypothesis driven.
ü Research is based on exploratory analysis.

ð Issue: Functional genomics is in search of a sound and 
accepted methodological paradigm.
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Microarray Technology

Scope: Microarrays are reshaping molecular biology.

Task: Simultaneously measure the expression value of thousands 
of genes and, possibly, of entire genomes.

Definition: A microarray is a vector of probes measuring the 
expression values of an equal number of genes.

Measure: Microarrays measure gene expression values as 
abundance of mRNA.

Types: There are two main classes of microarrays:
cDNA: use entire transcripts;
Oligonucleotide: use representative gene segments.
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Measuring Expression

Rationale:  Measurement of gene expression reverses the natural 
expression process.

Hybridization: Process of joining two complementary strands of 
DNA or one each of DNA and RNA to from a double-stranded 
molecule.

Artificial process: Backward the mRNA production.
ü DNA samples (probes) are on the microarray. 
ü Put cellular labeled mRNA on the microarray.
ü Wait for the sample to hybridize (bind).
ü Scan the image and, for each point, quantify the amount of 

hybridized mRNA.
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From Tissues to Microarrays
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cDNA microarrays


Fix, for each gene, many copies of two functional DNA on a glass. 

The labeled probes are allowed Fluorescent intensity in each probe 
to bind to complementary DNA measures which genes are present 
strands on the microarray. in which sample. 
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cDNA Microarray Data

Green: genetic material is present 
in the control but not in the 
treated sample.

Red: genetic material is only 
present in the treated sample 
but not in the control.

Yellow: genetic material is present 
in both samples. 

Gray: genetic material is not 
contained in either samples. 
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Oligonucleotide Microarrays

ð Oligonucleotide arrays : Affymetrix genechip.

ð Represent a gene with a set of about 20 probe pairs:
ü Each probe (oligonucleotide) is a sequence of 25 pairs of 

bases, characteristic of one gene.

ð Each probe pair is made by:
Perfect match (PM): a probe that should hybridize.
Mismatch (MM): a probe that should not hybridize, because the 

central base has been inverted.

ATGAGCTGATGCGATGCCATGAGAG

ATGAGCTGATGCCATGCCATGAGAGPM
MM
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Oligonucleotide Microarray Data

Expression = avg(PM-MM)

Scanned microarray

Each cell measures the 
expression level of a probe.

Intensity:  Gene  expression level 
is quantified by the intensity of its 
cells in the scanned image.

Perfect match probe cells

Perfect match Oligo
Mismatch Oligo

Fluorescence Intensity Image

Reference sequence
Spaced DNA probe pairs

3`5`

... TGTGATGGTGGGAATGGGTCAGAAGGACTCCTATGTGGGTGACGGAGGCC ...

Mismatch probe cells

AATGGGTCAGAAGGACTCCTATGTGGGTG    
AATGGGTCAGAACGACTCCTATGTGGGTG

mRNA reference sequence
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Expression Measures

Definition: Expression is calculated by estimating the amount of 
hybridized mRNA for each probe as of quantity of its fluorescent
emission.

Design: Different microarrays are designed differently:
cDNA: Combine conditions in paired experiments.
Oligonucleotide: Independent measures.

Experiments: Require different design per platform:
cDNA: One array for an experimental unit.
Oligonucleotide: 2 arrays for a experimental unit. 
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Statistical Challenges

Small N large P: Many variables, few cases.

Noisy results: Measurements are vary variable.

Brittle conditions: Sensitive to small changes in factors.

Design: Platforms are designed without 
considering the analysis to be done.
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Supervised vs Unsupervised

Elements:  Features (genes) 
and a training signal (class).

Question: Which function best 
maps features to class? 

Goal: Find a good predictive 
system of class (e.g. build a 
system able to take a patient 
and return a diagnosis).

Assumption: Different features 
are best predictor.

Task: Estimation (except for 
feature selection, the task of 
finding the best predictors).

Elements: Features (genes) but no 
training signal.

Question: Which features behave in 
a related (similar) way across 
experiments?

Goal: Understand interaction (e.g. 
how genes behave similarly 
under certain experimental 
conditions).

Assumption: Same behaviors mean 
same functional class.

Task: Model selection. 



Comparative Experiments

Healthy Cell Tumor Cell 

Sample 1 Sample 2 Sample 3 Sample 4 

Samples k=1,…,ni 

y 

Gene.Description S1 S2 S3 S4 S5 
AFFX-BioC-5_at (endogenous control) 88 283 309 12 168 
hum_alu_at (miscellaneous control) 15091 11038 16692 15763 18128 
AFFX-DapX-M_at (endogenous control) 311 134 378 268 118 
AFFX-LysX-5_at (endogenous control) 21 21 67 43 8 
AFFX-HUMISGF3A/M97935_MB_at (endogenous control) 215 116 476 155 122 
AFFX-HUMISGF3A/M97935_3_at (endogenous control) 797 433 1474 415 483 
AFFX-HUMRGE/M10098_5_at (endogenous control) 14538 615 5669 4850 1284 
AFFX-HUMRGE/M10098_M_at (endogenous control) 9738 115 3272 2293 2731 
AFFX-HUMRGE/M10098_3_at (endogenous control) 8529 1518 3668 2569 316 
AFFX-HUMGAPDH/M33197_5_at (endogenous control) 15076 19448 27410 14920 14653 
AFFX-HUMGAPDH/M33197_M_at (endogenous control) 11126 13568 16756 11439 15030 
AFFX-HUMGAPDH/M33197_3_at (endogenous control) 17782 18112 23006 17633 17384 
AFFX-HSAC07/X00351_5_at (endogenous control) 16287 17926 22626 15770 16386 

gikgenes 
g=1,…,G 
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Identify genes that are differentially expressed in two conditions i=A,B. 



Comparative Experiments


Case Control:  Asses how many times a gene is more (less) 
intense in one condition than in another. 

Elements: Condition = training signal; genes = features. 

Measure of differential expression: 
- ygBfold = 

ygA difference = 
ygA 

sygB g 

Threshold: decide a threshold, to select genes that are 
“significantly” differentially expressed. 

Rationale: A particular experimental condition creates differences 
in expression for some genes. 



Distribution Free Tests


Permutation tests to identify 
gene specific threshold: 

SAM (Stanford) uses a statistic - ygB 

similar to the classical t- t = 
ygA 

statistic. The parameter a is 
g

a + 
SgA 

2 

+ 
SgB 

2 

nBchosen to minimize the nA


coefficient of variation.

GeneCluster (Whitehead) uses 

s2n = 
ygA - ygB 

gsignal-to-noise ratio statistic. SgA + 
SgB 

Problem: p-values in multiple nA nB 

comparisons – corrections 

make impossible to identify

any change.




Supervised Classification


Goal: A predictive (diagnostic) model associating features to class.


Rationale: Difference is an indicator of predictive power.


Components: Dataset of features and a training signal.


Features: Gene expression levels in different classes.


Training signal: The class label.


Feature selection: Find the best predictors to maximize accuracy.


G3G1 G6G2 G4 G5 

C 
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Feature Selection

Task: Identify those genes that best predict the class.

Advantage I: Typically increases predictive accuracy.

Advantage II: More compact representation.

Advantage III: Provide insights into the process.

Type of Task: Model selection.

Differential analysis: A special case (binary) of feature (the most 
discriminating genes) selection.

Rationale: Since we cannot try all combinations, most different 
features should be the best at discriminating. 
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Parametric Methods

ð A simple approach to prediction is to assume that the features 
(genes) are conditionally independent given the class. 

ð These models are called Naïve Bayes Classifiers.

ð Estimate, for each gene, the probability density of the gene 
given each class: p(g|c).

ð The challenge is to identify the right distribution.

G3G1 G6G2 G4 G5

C
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Prediction

ð Once a mapping function (or a model + function for feature 
selection) has been identified, we can use this function to 
classify new cases.

ð Non parametric methods do not provide explicit functions to map 
features to class.

ð Mixture of Experts is a weighted voting algorithm to make 
prediction from non parametric models.

ð Intuitively, in a weighted voting algorithm:
ü Each gene casts a vote for one of the possible classes and.
ü This vote is weighted by a score assessing the reliability of 

the expert (in this case, the gene).
ü The class receiving the highest will be the predicted class.
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Parametric Prediction

Analysis: Suppose the analysis leads to select a group of genes 
which are differentially expressed across the two conditions.

Prediction: we may want to classify new samples on the basis of 
their expression profile z (molecular diagnosis):

Bayes rule: choose the maximum probability classification.

Assumptions: gene independent given class and parameters.

)|p(class profile)molecular  sample|class( ziip ===

∏ +==

==∝=

j ljljjgjgjj MpMizfMpMizfizf

ipizfzip

)}(),|()(),|({)class|(

)class()class|()|class(
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Predictive Validation

Prediction: To assess the validity of a classification system (either a 
function or a model + function), we can use an independent 
labeled data set and predict the class of each case with the 
generated system. Or split a sample in two sets:

Training set: a data set used to build the model/function;
Test set: a labeled data set to predict with the model/function.

Cross Validation: When an independent test set is not available, we 
can use cross validation:
1. Split the sample in k subsets;
2. Predict one subset using the other k-1 subsets to build the 

model/function;
3. Repeat the operation predicting the other sets.
Leave one out: for small samples, use single cases as k sets.
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An Example

Example: Acute lymphoblastic
leukemia (27) vs acute 
myeloid leukemia (11).

Method: Correlate gene profiles 
to an “extreme” dummy 
vector of 0s and 1s.

Results: 50 genes on each side.

Please see Figure 3b of Science. 
1999 Oct 15; 286 (5439):531-7. 

Molecular classification of cancer: 
class discovery and class prediction 
by gene expression monitoring. 

Golub TR, Slonim DK, Tamayo P, 
Huard C, Gaasenbeek M, Mesirov

 JP, Coller H, Loh ML, Downing JR,
 Calligiuri MA, Bloomfield CD,
 Lander ES. 

 

. 

 

. 

 

. 
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Normalization

ð An attempt to solve the problem of small sample size is to use
 “normalization” – a technique to 

reduce the variance.

ð Normalization is an accepted procedure to balance the two
 channels of a cDNA microarray.

ð When oligo microarrays were introduced, some tried to apply
 some form of variance reduction under the name of normalization 

to this new platform that has NO paired experiments.

ð There are hundreds of different “normalization” methods.

Please see Figure 1 of Nat Rev Genet. 2001 Jun; 2(6):418-27. 
Computational analysis of microarray data. 
Quackenbush J. 
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Normalization?
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Unsupervised Methods

ð Differential experiments usually end up with:
ü A list of genes changed across the two conditions;
ü A “stochastic profile” of each condition.

ð Useful to identify diagnostic profiles and prognostic models.

ð They are not designed to tell us something about regulatory 
mechanisms, structures of cellular control.

ð With supervised methods, we look only at relations between 
gene expression and experimental condition.

ð Unsupervised methods answer different experimental questions.

ð We use unsupervised methods when we are interested in 
finding the relationships between genes rather than the 
relationship between genes and a training signal (eg a disease).
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One Dimensional Clustering

Strategy: Compute a table of pair-wise distances (eg, correlation, 
Euclidean distance, information measures) between genes.

Clustering: Use permutation tests to assess the cut point.

Relevance networks: Create a network of correlated genes and 
remove the links below the chosen threshold.

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 Gene 7
Gene 1 1 0.2 0.8 -0.3 0.5 0.7 0.1
Gene 2 1 0.5 0.6 -0.2 -0.5 0.3
Gene 3 1 0.2 0.1 -0.2 0.1
Gene 4 1 0.9 0.4 0.3
Gene 5 1 0.1 -0.4
Gene 6 1 0.1
Gene 7 1

Please see Figure 2 of Proc Nati Acad 
1 0.5 0.6 -0.2 -0.5 0.3 

Sci U S A. 2000 Oct 24;97(22):12182-6. 

Discovering functional relationships 
between RNA expression and chemotherapeutic 
susceptibility using relevance networks. 

Butte AJ, Tamayo P, Slonim D, Golub 

TR, Kohane IS. 

1 0.5 0.6 -0.2 -0.5 1 0.5 0.6 -0.2 -0.5 1 0.5 0.6 -0.2 -0.5 1 0.5 0.6 -0.2 -0.5 1 0.5 0.6 -0.2 -0.5 
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Hierarchical Clustering

Components: Expression profiles, no training signal.

Method: Sort the expression profiles in a tree a using a pair-wise 
similarity measure (say, correlation)  between all the profiles.

Model: Build a single tree merging all sequences. Use the mean of 
each set of merged sequences as representation of the joint to 
traverse the tree and proceed until all series are merged.

Abstraction: When two genes are merged, we need to create an 
abstract representation of their merging (average profile). 

Recursion: The distance step is repeated at each merging until a 
single tree is created. 

Clustering: Pick a threshold to break down the single tree into a set 
of clusters.

Eisen et al., PNAS (1998)
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Dendrogram

Please refer to Curr Opin Mol Ther. 1999 Jun;1(3):344-58. 

Modified oligonucleotides-synthesis, properties and applications. 

Lyer RP, Roland A, Zhou W, Ghosh K. 
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Two Dimensional Clustering

ð We want to discover an unknown set of patient classes 
based on an unknown set of

 
gene functional classes.

ð A two-dimensional optimization problem trying to simultaneously 
optimize distribution of genes

 
and samples.

ð Survival time (KL curves) were used as independent validation
 of patient clusters.

Please see Figures 1 and 5 of Nature. 2000 
Feb 3;403(6769):503-11.

Distinct types of diffuse large B-cell lymphoma 
identified by gene expression profiling. 

Alizadeh AA, et al.
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Bayesian Clustering

Problem: How do we decide that N genes are sufficiently similar 
become a cluster on their own?

Similarity: Profiles are “similar” when they are generated by the 
same stochastic process. 

Example: EKGs are similar but not identical series generated by 
the a set of physiological process.

Clusters: Cluster profiles on the basis of their similarity is to group 
profiles generated by the same process.

Bayesian solution: The most probable set of generating processes 
responsible for the observed profiles.

Strategy: Compute posterior probability p(M|D) of each clustering 
model given the data and take the highest.

Ramoni et al., PNAS (2002)
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Posterior Probability

ð We want the most probable model given the data:

ð But we use the same data for all models:

p(Mi|∆) ∝ p(∆ |Mi)p(Mi).

ð We assume all models are a priori equally likely:

p(Mi|∆) ∝ p(∆ |Mi).

ð This is the marginal likelihood, which gives the most probable 
model generating ∆.
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)()|(

)(
),(

)|(
∆

∆
=

∆
∆

=∆
p

MpMp
p
Mp

Mp iii
i



HST 512

Temporal Clustering

ð A process developing along 
time (eg yeast cell cycle).

ð Take microarray measurements 
along this process (2h for 24h).

ð Cannot use standard similarity 
measures (eg correlation) 
because observations are not 
independent.

ð Need a model able to take into 
account this dependence of 
observations

ð Our perception of what is similar 
may be completely different 
under these new conditions.
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Autoregressive Models

ð Take a time series, of dependent observations:

ð Under the assumption is that t0 is independent of the remote
past given the recent past: 

ð The length of the recent past is the Markov Order p.
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Networks

ð Clustering rests on the assumption that genes behaving in 
similar ways belong to the same process.

ð The result of a clustering model is to break down the set of all
genes into boxes containing genes belonging to the same 
process.

ð However, clustering tells us nothing about the internal 
mechanisms of this control structures: it provides boxes, not 
chains of command.

ð To discover chains of command, we need to resort to a new 
approach: Bayesian networks.
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Bayesian Networks

ð Bayesian networks (also called Causal probabilistic networks) 
were originally developed to encode human experts’ knowledge, 
to they are easily understandable by humans.

ð Their two main features are:
ü The ability to represent causal knowledge to perform 

diagnosis, prediction, etc.
ü They are grounded in  statistics and graph theory.

ð Late ’80s, people realize that the statistical foundations of 
Bayesian networks makes it possible to learn them from data 
rather than from experts.
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Components

Qualitative: A dependency graph made by:
Node: a variable X, with a set of states {x1,…,xn}.
Arc: a dependency of a variable X on its parents Π.

Quantitative: The distributions of a variable X given each 
combination of states πi of its parents Π.

E

A

I

A p(A)
Y 0.3
O 0.7

A p(A)
Y 0.3
O 0.7

E p(E)
L 0.8
H 0.2

E p(E)
L 0.8
H 0.2

A E I p(I|A,E) 
Y L L 0.9 
Y L H 0.1 
Y H L 0.5 
Y H H 0.5 
O L L 0.7 
O L H 0.3 
O H L 0.2 
O H H 0.8 

 

 

A E I p(I|A,E) 
Y L L 0.9 
Y L H 0.1 
Y H L 0.5 
Y H H 0.5 
O L L 0.7 
O L H 0.3 
O H L 0.2 
O H H 0.8 

 

 

A=A=AgeAge; E=; E=EducationEducation; I=; I=IncomeIncome



HST 512

Learn the Structure

ð In principle, the process of learning a Bayesian network 
structure involves:
ü Search strategy to explore the possible structures;
ü Scoring metric to select a structure.

ð In practice, it also requires some smart heuristic to avoid the 
combinatorial explosion of all models:
ü Decomposability of the graph;
ü Finite horizon heuristic search strategies;
ü Methods to limit the risk of ending in local maxima.
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An Application

Cases: 41 patients affect by leukemia.  
Genomic: expression measures on 72 genes;
Clinical: 38 clinical phenotypes (3 used).

Representational Risks:
Deterministic links: hide other links more interesting.
Overfitting: Too many states for the available data.

Transformations:
Definitional dependencies: if suspected, removed.
Sparse phenotypes: consolidated (oncogene status).
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The Network
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Dependency Strength

Bayes factor: ratio between the probability of 2 models.

Threshold: To add a link, we need to gain at least 3 BF. 
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Validation

Cross-validation: A form of predictive validation.
1. For each case, remove it from the database;
2. Use these data to learn the probability distributions of the 

network;
3. Use the quantified network to predict value on a variable of 

the removed case.

Validation parameters: 
Correctness: Number of cases correctly predicted;
Coverage: Number of cases actually predicted;
Average Distance: How uncertain is a prediction.
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Take Home Messages

ð Machine learning methods are now an integral part of the new, 
genome-wide, biology.

ð Genome-wide biology presents some new challenges to 
machine learning, such as the sample size of the experiments.

ð Supervised and unsupervised methods answer different 
questions:
ü Supervised methods try to map a set of gene profiles to a 

predefined class.
ü Unsupervised methods try to dissect interactions of genes.

ð Distance-based clustering rests on the assumption that genes 
with similar behavior also belong to the same process/function.

ð There are methods to identify dependency structures from data.
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Reading/Software List

Reviews:
P Sebastiani et al. Statistical Challenges in Functional 

Genomics. Statistical Science, 2003. 
http://genomethods.org/papers/statscience02.pdf.

IS Kohane et al. Microarrays for an Integrative Genomics. MIT 
Press, Cambridge, MA, 2002.

Software:
GeneCluster: http://www-genome.wi.mit.edu/cancer.
SAM: http://www-stat.stanford.edu/~tibs/SAM.
CAGED: http://genomethods.org/caged.

Assignment:
Supervised: Using GeneCluster or SAM;
Unsupervised: Using GeneCluster or CAGED.


